فهرست:
عنوان................................................................................................................................................................................ صفحه
فهرست مطالب... 10
فهرست شکلها 12
فهرست جدولها 15
فصل 1. 16
1-1- مقدمه. 17
1-2- اهداف تحقیق و بیان مساله. 18
1-3- پیشینه تحقیق.. 19
1-4- ساختار تحقیق.. 20
فصل 2. 21
2-1- مقدمه. 22
2-2- فرآیند پرس همسان در کانال زاویهدار 23
2-2-2- مسیرهای مختلف اعمال فرآیند پرس همسان در کانال زاویهدار 24
2-2-3- کرنش اعمالی در فرآیند پرس همسان در کانال زاویهدار و فرآیندهای مشابه. 27
2-2-4- پارامترهای مهم در فرآیندپرس همسان در کانال زاویهدار و همچنین فرآیندهای مشابه. 28
2-2-4-1- زاویه کانال.. 28
2-2-4-2- زاویه انحنا 30
2-2-4-3- دمای پرسکاری.. 30
2-2-4-4- سرعت پرس.... 31
2-2-4-5- فشار پشتی.. 32
2-2-5- تأثیر فرآیند پرس همسان در کانال زاویهدار بر ریزساختار 33
2-2-6- مکانیزم کاهش اندازه دانه در فرآیند پرس همسان در کانال زاویهدار و فرآیندهای مشابه. 35
2-3- فرآیند نورد همسان در کانال زاویهدار به عنوان یکی از فرآیندهای تغییرشکل شدید. 39
2-4- ترکیب نورد همسان در کانال زاویهدار و آنیل به منظور بهینه سازی خواص مکانیکی.. 41
2-4-2- تأثیر نورد همسان در کانال زاویهدار بر روی خواص مکانیکی آلومینیوم. 43
2-4-3- تأثیر نورد همسان در کانال زاویهدار بر روی خواص مکانیکی فولاد. 51
2-5- معرفی بعضی فرآیندهای تولید مقاطع دوفلزی.. 58
2-5-1- اکستروژن.. 58
2-5-2- جوشکاری انفجاری.. 59
2-5-3- نورد اتصالی تجمعی.. 61
فصل 3. 66
3-1- مقدمه. 67
3-2- مواد اولیه مورد استفاده 67
3-3- نحوه انجام فرآیند نورد همسان در کانال زاویهدار بر ورق دو لایه مس- فولاد. 68
3-4- بررسی خواص نمونهها تحت فرآیند نورد همسان در کانال زاویهدار 69
3-4-1- آزمون استحکام کششی.. 69
3-4-2- آزمون میکروسختی.. 70
3-4-3- آزمون بررسی ریزساختار 70
فصل 4. 71
4-1- آزمون کشش نمونههای تحت نورد همسان در کانال زاویهدار 72
4-1-2- بررسی روند تغییرات استحکام تسلیم.. 73
4-1-3- بررسی روند تغییرات استحکام نهایی.. 74
4-2- نتایج میکروسختی.. 75
4-3- تصاویر میکروسکوپ الکترونی روبشی SEM... 80
فصل 5. 83
5-1- نتیجهگیری.. 84
5-2- محدودیتهای پژوهش.... 86
5-3- پیشنهادها 86
مراجع.. 87
منبع:
[1] Yuan J, Pang Y, Li T. Multilayer clad plate of stainless steel/aluminum/aluminum alloy. J Wuhan Univ Technol-Mat Sci Edit. 2011;26:111-3.
[2] Kawase H, Makimoto M, Takagi K, Ishida Y, Tanaka T. Development of Aluminum-clad Steel Sheet by Roll-bonding. Transactions of the Iron and Steel Institute of Japan. 1983;23:628-32.
[3] Eivani AR, Taheri AK. A new method for producing bimetallic rods. Materials Letters. 2007;61:4110-3.
[4] Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. 2006;51:881-981.
[5] Beyerlein IJ, Tóth LS. Texture evolution in equal-channel angular extrusion. Progress in Materials Science. 2009;54:427-510.
[6] Nakashima K, Horita Z, Nemoto M, Langdon TG. Development of a multi-pass facility for equal-channel angular pressing to high total strains. Materials Science and Engineering: A. 2000;281:82-7.
[7] Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG. The shearing characteristics associated with equal-channel angular pressing. Materials Science and Engineering: A. 1998;257:328-32.
[8] Furuno K, Akamatsu H, Oh-ishi K, Furukawa M, Horita Z, Langdon TG. Microstructural development in equal-channel angular pressing using a 60° die. Acta Materialia. 2004;52:2497-507.
[9] Nakashima K, Horita Z, Nemoto M, Langdon TG. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Materialia. 1998;46:1589-99.
[10] Huang WH, Chang L, Kao PW, Chang CP. Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion. Materials Science and Engineering: A. 2001;307:113-8.
[11] Djavanroodi F, Ebrahimi M. Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Materials Science and Engineering: A. 2010;527:1230-5.
[12] Yamashita A, Yamaguchi D, Horita Z, Langdon TG. Influence of pressing temperature on microstructural development in equal-channel angular pressing. Materials Science and Engineering: A. 2000;287:100-6.
[13] Iwahashi Y, Horita Z, Nemoto M, Langdon TG. The process of grain refinement in equal-channel angular pressing. Acta Materialia. 1998;46:3317-31.
[14] Xia K, Wang JT, Wu X, Chen G, Gurvan M. Equal channel angular pressing of magnesium alloy AZ31. Materials Science and Engineering: A. 2005;410–411:324-7.
[15] Tong LB, Zheng MY, Hu XS, Wu K, Xu SW, Kamado S, et al. Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Materials Science and Engineering: A. 2010;527:4250-6.
[16] Segal VM. Equal channel angular extrusion: from macromechanics to structure formation. Materials Science and Engineering: A. 1999;271:322-33.
[17] Meyers MA, Nesterenko VF, LaSalvia JC, Xue Q. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Materials Science and Engineering: A. 2001;317:204-25.
[18] Mishra A, Richard V, Grégori F, Asaro RJ, Meyers MA. Microstructural evolution in copper processed by severe plastic deformation. Materials Science and Engineering: A. 2005;410–411:290-8.
[19] Su CW, Lu L, Lai MO. A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies. Materials Science and Engineering: A. 2006;434:227-36.
[20] Segal VM. Materials processing by simple shear. Materials Science and Engineering: A. 1995;197:157-64.
[21] Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process. Journal of Materials Processing Technology. 2011;211:1085-90.
[22] Habibi A, Ketabchi M. Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing. Materials & Design. 2012;34:483-7.
[23] Hassani FZ, Ketabchi M. Nano grained AZ31 alloy achieved by equal channel angular rolling process. Materials Science and Engineering: A. 2011;528:6426-31.
[24] Cheng YQ, Chen ZH, Xia WJ. Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Materials Characterization. 2007;58:617-22.
[25] El-Danaf EA. Mechanical properties, microstructure and micro-texture evolution for 1050AA deformed by equal channel angular pressing (ECAP) and post ECAP plane strain compression using two loading schemes. Materials & Design. 2012;34:793-807.
[26] Satheesh Kumar SS, Raghu T. Tensile behaviour and strain hardening characteristics of constrained groove pressed nickel sheets. Materials & Design. 2011;32:4650-7.
[27] Azimi A, Tutunchilar S, Faraji G, Besharati Givi MK. Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy. Materials & Design. 2012;42:388-94.
[28] Park K-T, Kwon H-J, Kim W-J, Kim Y-S. Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Materials Science and Engineering: A. 2001;316:145-52.
[29] Xue Q, Beyerlein IJ, Alexander DJ, Gray Iii GT. Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing. Acta Materialia. 2007;55:655-68.
[30] McKenzie PWJ, Lapovok R, Estrin Y. The influence of back pressure on ECAP processed AA 6016: Modeling and experiment. Acta Materialia. 2007;55:2985-93.
[31] Gu C, Lian J, Jiang Z, Jiang Q. Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scripta Materialia. 2006;54:579-84.
[32] Park J-W, Kim J-W, Chung Y-H. Grain refinement of steel plate by continuous equal-channel angular process. Scripta Materialia. 2004;51:181-4.
[33] Qu S, Huang CX, Gao YL, Yang G, Wu SD, Zang QS, et al. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing. Materials Science and Engineering: A. 2008;475:207-16.
[34] Chitkara NR, Aleem A. Extrusion of axi-symmetric bi-metallic tubes: some experiments using hollow billets and the application of a generalised slab method of analysis. International Journal of Mechanical Sciences. 2001;43:2857-82.
[35] Chen Z, Ikeda K, Murakami T, Takeda T, Xie J-X. Fabrication of composite pipes by multi-billet extrusion technique. Journal of Materials Processing Technology. 2003;137:10-6.
[36] Sun X-j, Tao J, Guo X-z. Bonding properties of interface in Fe/Al clad tube prepared by explosive welding. Transactions of Nonferrous Metals Society of China. 2011;21:2175-80.
[37] Zamani E, Liaghat G. Explosive welding of stainless steel–carbon steel coaxial pipes. Journal of Materials Science. 2012;47:685-95.
[38] Mukae S, Nishio K, Kato M, Inoue T, Sumitomo K. Effect of heat treatment on bond characteristics of aluminium clad steel: Production and characteristics of vacuum roll bonded clad materials (2nd Report). Welding International. 1995;9:384-9.
[39] Tsuji N, Shiotsuki K, Utsunomiya H, Saito Y. Low temperature superplasticity of ultra-fine grained 5083 aluminium alloy produced by accumulative roll-bonding. Materials Science Forum: Trans Tech Publ; 1999. p. 73-8.
[40] Saito Y, Utsunomiya H, Tsuji N, Sakai T. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia. 1999;47:579-83.
[41] Tsuji N, Saito Y, Lee S-H, Minamino Y. ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials. Nanomaterials by Severe Plastic Deformation: Wiley-VCH Verlag GmbH & Co. KGaA; 2005. p. 477-90.
[42] Talebian M, Alizadeh M. Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics. Materials Science and Engineering: A. 2014;590:186-93.
[43] ASTM E8/E8M-09, “Standard Test Methods for Tension Testing of Metallic Materials”, Pennsylvania (United States): ASTM International; December (2009)