فهرست:
فهرست مطالب..........................................................................................................................................آ
فهرست شکل ها........................................................................................................................................د
فهرست جدول ها.....................................................................................................................................ح
چکیده.....................................................................................................................................................ط
واژه های کلیدی......................................................................................................................................ی
فصل اول: مقدمه............................................................................................................1
1-1- بحران جهانی انرژی و انرژی باد.......................................................................................................1
1-2- توربین های بادی و انواع آن.............................................................................................................4
1-2-1- توربین های بادی محور عمودی...................................................................................................5
1-2-2- توربین های بادی محور افقی........................................................................................................6
1-3- ایرودینامیک روتور توربین های بادی...............................................................................................9
1-3-1- ضریب عملکرد توربین های بادی..............................................................................................12
1-3-2- ایرفویل توربین های بادی..........................................................................................................16
1-4- بررسی اجمالی تحقیق اخیر............................................................................................................20
فصل دوم: مروری بر تحقیقات پیشین.............................................................................22
2-1- طراحی از پایه................................................................................................................................23
2-2- بهینه سازی ایرفویل ها....................................................................................................................24
2-3- روش های تحلیل( طراحی مستقیم).................................................................................................26
2-3-1- روش مستقیم پنل.......................................................................................................................26
2-3-2- روش لزج-غیرلزج....................................................................................................................28
2-3-3- روش های دینامیک سیالات محاسباتی.......................................................................................28
2-4- مدل اغتشاش اسپالارت-آلماراس..................................................................................................30
2-5- آزمایش های تجربی .....................................................................................................................31
2-6- موسسات و مراکز طراحی ایرفویل توربین های بادی.......................................................................32
فصل سوم: روش طراحی و تعریف مسئله.......................................................................34
فصل چهارم: تحلیل ایرودینامیکی ایرفویل....................................................................38
4-1- روش عددی پنل............................................................................................................................38
4-1-1- شرط کوتا.................................................................................................................................41
4-1-2- ضریب تاثیر...............................................................................................................................42
4-1-3- جواب عمومی معادله ی لاپلاس بر پایه اتحاد گرین...................................................................44
4-1-4- الگوریتم و مراحل حل یک مسئله به روش پنل...........................................................................46
4-1-5- پیکربندی و حل مسئله...............................................................................................................46
4-1-6- نتایج حاصل از روش پنل...........................................................................................................51
4-2- دینامیک سیالات محاسباتی CFD..................................................................................................57
4-2-1- مقدمه ای در مورد دینامیک سیالات محاسباتی...........................................................................57
4-2-2- الگوریتم حل یک مسئله CFD..................................................................................................57
4-2-3- شبکه بندی و حل مسئله.............................................................................................................58
4-2-4- مدل سازی اغتشاش..................................................................................................................63
4-2-5- استقلال شبکه............................................................................................................................65
4-2-6- نتایج حل CFD.........................................................................................................................66
4-3- بررسی تجربی و آزمایش تونل باد..................................................................................................78
4-3-1- مقدمات کار..............................................................................................................................78
4-3-2- نتایج حاصل از آزمایش تونل باد................................................................................................87
فصل پنجم: بحث و نتیجه گیری، مقایسه و پیشنهادات......................................................90
5-1- مقایسه نتایج حاصل از روش های مختلف تحلیل ایرودینامیکی.......................................................91
5-2- مقایسه نتایج با ایرفویل های پیشین..................................................................................................95
5-2-1- مقایسه با نتایج تجربی پیشین.......................................................................................................95
5-2-2- مقایسه با نتایج عددی ایرفویل های پیشین...................................................................................99
5-3- مقایسه ضریب عملکرد محاسبه شده از روش CFD و نتیجه آزمایش تونل باد................................101
5-4- تاثیر تعداد پره های توربین بر ضریب عملکرد...............................................................................102
5-5- جمع بندی و نتیجه گیری.............................................................................................................103
پیوست ها..................................................................................................................107
پیوست (الف): جداول مربوط به نتایج....................................................................................................107
پیوست (ب): کد کامپیوتری روش عددی پنل بر پایه توزیع خطی گردابه...............................................
منبع:
فهرست منابع
[1] Jain, P, “Wind Energy Engineering”, McGraw Hill, New York, 2011.
[2] World Wind Energy Association. World Wind Energy Report 2009, World Wind Energy Association, Bonn, Germany, March, 2010.
[3] Babadi Soultanzadeh,M, Mehmandoust Isfahani,B, Toghrai Semiromi,D, “Numerical Simulation of Flow Field around Darrieus Vertical axis wind turbine to Estimate Rotational wakes Size”, Journal of middle east Applied Science and Technologies,vol.3, Issue 9, 2014, pp. 394-400.
[4] Hosseini, S, “A review on greenenergy potentialsin Iran”, Renewableand Sustainable Energy Reviews, vol.27, 2013, pp.533–545.
[5] Pirzaman, F, “Energy and Sustainability”, First national conference on new and clean energies, Hamedan, Iran, 2013.
[6] Kousalari, A, “Energy management with respect to sustainable energies”, First national conference on new and clean energies, Hamedan, Iran, 2013.
[7] Babadi Soultanzadeh, M, Haratian, M, “Fundamental of wind turbine design”, Islamic Azad University of Khomeini shahr, Iran, 2011.
[8] www.suna.org.ir/fa/aboutorganization/ationoffice/windenergyoffice/windatlasmap
[9] Li, C, “ 2.5D Large eddy simulation of vertical axis wind turbine in consideration of high angle of attack”, Renewable energy, vol.51, 2013, pp.317-330.
[10] Buttha, M, “Vertical axis wind turbine- A review of various configurations and design techniques”, Renewable and sustainable energy reviews, vol.16, 2012, pp.1926– 1939.
[11] Howell, R, “Wind tunnel and numerical study of a small vertical axis wind turbine”, Renewable energy, vol.35, 2010, pp.412–422.
[12] Lanzafame, R, “Design and performance of a double-pitch wind turbine with non-twisted blades”, Renewable energy, vol.34, 2009, pp.1413–1420.
[13] Abbasi, T, “Wind energy: Increasing deployment, rising environmental concerns”, Renewable and sustainable energy reviews, vol.31, 2014, pp.270–288.
[14] Burton, T, “Wind Energy Handbook”, JOHN WILEY & SONS, LTD, New York, 2001.
[15] Ackermann, T, “Wind power in power systems”, JOHN WILEY & SONS, LTD, Stockholm, Sweden, 2005.
[16] Henriques, J. C. C, “Design of new urban wind turbine airfoil using pressure-load inverse method”, Renewable energy, vol.34, 2009, pp.2728–2734.
[17] Singh, R, “Design of a low Reynolds number airfoil for small horizontal axis wind turbines”, Renewable energy, vol.42, 2012, pp.66-76.
[18] Katz, J, “Low Speed Aerodynamics”, McGraw-Hill, New York 1991.
[19] Moran, J, “An introduction to theoterical and computational aerodynamics”, JOHN WILEY & SONS, LTD, New york, 1998.
[20] Buttha, M, “Vertical axis wind turbine- A review of various configurations and design techniques”, Renewable and sustainable energy reviews, vol.16, 2012, pp.1926– 1939.
[21] http://docs.desktop.aero/appliedaero/airfoils2/airfoildesign.html
[22] Kamoun, B, “The inverse design of wind turbine blade sections by the singularities method”, Renewable Energy, vol.31, 2006, pp.2091–2107.
[23] Sun, H, “Wind turbine airfoil design using response surface method”, Journal of Mechanical Science and Technology, vol.25 (5), 2011, pp.1335-1340.
[24] Chen, J, “Improvement of airfoil design using smooth curvature technique”, Renewable Energy, vol.51, 2013, pp.426-435.
[25] Quagliarella, D, “Viscous single and multicomponent airfoil design with genetic alghorithm”, Finite Elements in Analysis and Design, vol.37, 2001, pp.365-380.
[26] Shahrokhi, A, “Airfoil shape parameterization for optimum Navier–Stokes design with genetic algorithm”, Aerospace Science and Technology, vol.11, 2007, pp.443–450.
[27] Srinath, D, N, “Optimal aerodynamic design of airfoils in unsteady viscous flows”, Computer Methods in Applied Mechanics and Engineering, vol.199, 2010, pp.1976–1991.
[28] Jahangirian, A, “Aerodynamic shape optimization using efficient evolutionary algorithms and unstructured CFD solver”, Computers & Fluids, vol.46, 2011, pp.270–276.
[29] Kwon, H, “Enhancement of wind turbine aerodynamic performance by a numerical optimization technique”, Journal of Mechanical Science and Technology, vol.26 (2), 2012, pp.455-462.
[30] Huque, Z, “Optimization ofWind Turbine Airfoil Using Nondominated Sorting Genetic Algorithm and Pareto Optimal Front”, International Journal of Chemical Engineering, Vol.2012, Article ID 193021, 9 pages.
[31] Gocmen, T, “Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines”, Energy, vol.46, 2012, pp.62-71.
[32] Ribeiro, A, F, P, “An airfoil optimization technique for wind turbines”, Applied Mathematical Modelling, vol.36, 2012, pp.4898–4907.
[33] Mukesh, R, “Airfoil shape optimization using non-traditional optimization technique and its validation”, Journal of King Saud University – Engineering Sciences, 2013, Article in Press.
[34] Hwang, W, S, “A boundary node method for airfoils based on the Dirichlet Condition”, Comput. Methods Appl. Mech. Engrg, vol.190, 2000, pp.1679-1688.
[35] Kamoun, B, “A wind turbine blade profile analysis code based on the singularities method”, Renewable Energy, vol.30, 2005, pp.339–352.
[36] Wang, L, B, “A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine”, Energy Conversion and Management, vol.48, 2007, pp.454–461.
[37] Stewart, A, L, “Panel methods for airfoils in turbulent flow”, Journal of Soundand Vibration, vol.329, 2010, pp.3709–3720.
[38] Adrian, C, “The study of the potential flow past a submerged hydrofoil by the complex boundary elemen tmethod”, Engineering Analysis with Boundary Elements, vol.39, 2014, pp.23–35.
[39] Bermudez, L, “Viscous–inviscid method for the simulation of turbulent unsteady wind turbine airfoil flow”, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, 2002, pp.643–661.
[40] Hamdani, H, “Aerodynamic forces and flow structures of an airfoil in some unsteady motions at small Reynolds number”, Acta Mechanica, vol.145, 2000, pp.173-187.
[41] Jao, J, “Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils”, Procedia Engineering, vol.31, 2012, pp.80 – 86.
[42] Sayed, M, “Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method”, Energy Conversion and Management, vol.64, 2012, pp.541–550.
[43] Gao, L, “Numerical Simulation of Turbulent Flow past Airfoils on OpenFOAM”, Procedia Engineering, vol.31, 2012, pp.756 – 761.
[44] Juanmian, L, “Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number”, Chinese Journal of Aeronautics, vol.26 (4), 2013, pp.918–925.
[45] Ravi, H, C, “Numerical Investigation of Flow Trasision for NACA-4412 Airfoil Using Computational Fluid Dynamics”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2 (7), 2013, pp.2778-2785.
[46] Pellegrino, A, “Vortex shedding from a windturbine blade section at high angles of attack”, J. WindEng.Ind.Aerodyn, vol.121, 2013, pp.131–137.
[47] Spalart, P, R, “A One-Equation Turbulence Model for Aerodynamic Flows”, AIAA-92-0439, USA, 1992.
[48] Liu, Y, “Modification of Spalart–Allmaras model with consideration of turbulence energy backscatter using velocity helicity”, Physics Letters A, vol.375, 2011, pp.2377–2381.
[49] Allmaras, S, R, “Modications and Clarications for the Implementation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, 2012.
[50] Crivellini, A, “A Spalart–Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows”, Journal of Computational Physics, vol.241, 2013 pp.388–415.
[51] Crivellini, A, “Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils”, International Journal of Heat and Fluid Flow, vol.47, 2014, pp.70–83.
[52] Devinant, Ph, “Experimental study of wind-turbine airfoil aerodynamics in high turbulence”, Journal of Wind Engineering and Industrial Aerodynamics, vol.90, 2002, pp.689–707.
[53] Jun, Z, “A High-speed Nature Laminar Flow Airfoil and Its Experimental Study in Wind Tunnel with Nonintrusive Measurement Technique”, Chinese Journal of Aeronautics, vol.22, 2009, pp.225-229.
[54] Selig, M, “Wind Tunnel Testing Airfoils at Low Reynolds Numbers”, 49th AIAA Aerospace Sciences Meeting, USA, 2011.
[55] Velazquez, L, “Experimental Measurments of the Aerodynamics Characteristic of Two-Dimensional Airfoil for an Unnamed Aerial Vehicle”, EPJ Web of Conferences, 2012.
[56] Bertagnolio, F, “Wind Turbine Airfoil Catalouge”, Riso National Laboratory, Roskilde, Denmark, 2001.
[57] Rooji, R, “Design of Airfoils for Wind Turbine Blades”, Delft University of Technology, The Netherlands, 2004.
[58] TangIer, J, L, “NREL Airfoil Families for HAWTs”, National Renewable Energy Laboratory, USA, 1995.
[59] Drela. Mark, MIT university, http://web.mit.edu/drela/Public/web/xfoil/
[60] ABBOTT, H, I, “Theory of the wing sections”, Dover Publication, New York, 1959.
[61] http://library.propdesigner.co.uk/html/wortmann_aerofoils.html
[62] Pope, K, “Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines”, Renewable Energy, vol.35, 2010, pp.2102-2113.