فهرست:
فهرست مطالب. هشت
چکیده. 1
فصل اول: مقدمه 7
1-1 تاریخچهای به روشهای حل مسایل ارتعاش آزاد ورقها 8
1-2 روش المان محدود سلسله مراتبی.. 21
1-2-1 مقدمه. 21
1-2-2 روشهای المان محدود 22
1-2-3 مروری بر کارهای انجام گرفته در زمینه روش المان محدود سلسله مراتبی.. 23
1-2-4 ویژگیهای روش المان محدود سلسله مراتبی.. 24
1-3 اهداف پژوهش.... 25
فصل سوم: تئوریهای کلاسیک و تغییرشکل برشی مرتبه اول ورق 26
2-1 مقدمه. 26
2-2 تعریف ماده عمودسانگرد. 27
2-3 تئوری کلاسیک ورق لایه لایه. 27
2-3-1 میدانهای جابجایی و کرنش... 28
2-3-2 رابطههای ساختاری تنش- کرنش... 29
2-3-3 فرمولبندی المان محدود 30
2-3-4 ماتریس سختی.. 31
2-3-5 تابعهای درونیاب لاگرانژی. 32
2-3-6 تابعهای شکل هرمیتی.. 33
2-3-7 ماتریس جرم. 36
2-3-8 روش المان محدود سلسله مراتبی برای ورق تئوری کلاسیک... 38
2-3-9 تابعهای شکل سلسله مراتبی درون-صفحه. 38
2-3-10 تابعهای شکل برون-صفحه. 41
2-3-11 استخراج ماتریس سختی وجرم. 43
2-3-12 حل عددی ورق با تئوری کلاسیک ورق. 43
2-4 تئوری تغییرشکل برشی مرتبه اول. 51
2-4-1 میدانهای جابجایی و کرنش... 51
2-4-2 رابطههای ساختاری تنش- کرنش... 53
2-4-3 فرمولبندی المان محدود 53
2-4-4 ماتریس سختی.. 54
2-4-5 ماتریس جرم. 56
2-4-6 روش المان محدود سلسله مراتبی.. 57
فصل سوم: تئوری ورق دومتغیره پالوده شده 60
3-1 مقدمه. 60
3-2 فرضیات اساسی.. 61
3-3 رابطههای کرنش- جابجایی.. 62
3-4 معادلههای ساختاری تنش-کرنش.... 63
3-5 معادلههای حرکت... 65
3-6 فرمولبندی المان محدود. 68
3-6-1 ماتریس سختی.. 69
3-6-2 ماتریس جرم. 72
3-7 روش المان محدود سلسله مراتبی برای تئوری ورق دومتغیره پالوده شده. 73
3-7-1 تابعهای شکل روش المان محدود سلسله مراتبی.. 74
3-7-1 نتیجهگیری. 75
نتیجهگیری و پیشنهاد 87
4-1 نتیجه گیری.. 87
4-2 پیشنهادها 88
روش المان محدود سلسله مراتبی 89
پ-1-1 تابعهای شکل سلسله مراتبی.............................................................................................................................89
پ-1-2 تابعهای شکل سلسله مراتبی یکبعدی..............................................................................................................92
پ-1-3 تابعهای شکل سلسله مراتبی المان میله..............................................................................................................96
پ-1-4 تابعهای شکل سلسله مراتبی المان تیر................................................................................................................98
پ-1-5 تابعهای مثلثاتی یکبعدی.............................................................................................................................101
پ-1-6 تابعهای شکل سلسله مراتبی دوبعدی (المان مستطیلی).....................................................................................102
مراجع 104
منبع:
[1] Liew, K. M., Xiang, Y. and Kitipornchai, S., “Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundry conditions”, Computers and Structures, vol. 49, pp. 1-29, 1993.
[2] Gautham, B. P. and Ganesan, N., “Free vibration analysis of thick spherical shells”, Computers and Structures, vol. 45, pp. 307-313, 1992.
[3] Lo, K., Christensen, R. and Wu, E., “A high-order theory of plate deformation”, ASME Journal of Applied Mechanics, vol. 44, pp. 669-676, 1977.
[4] Levinson, M., “An accurate, simple theory for statics and dynamics of slastic plates”, Mechanics Research Communications, vol. 7, pp. 343-350, 1980.
[5] Reddy, J. N., “A simple higher-order theory for laminated composite plates”, ASME Journal of Applied Mechanics, vol. 51, pp. 745-752, 1984.
[6] Robbins, D-H. J. and Reddy, J. N., “Modeling of thick composites using layer-wise theory”, International Journal for Numerical Methods in Engineering, vol. 36, pp. 655-677, 1993.
[7] Nosier, A., Kapania, R. K. and Reddy, J. N., “Free vibration analysis of laminated plates using a layer-wise theory”, American Institute of Aeronautics and Astronautics Journal, vol. 31, pp. 2335-2346, 1993.
[8] Bert, C. W., “Research on dynamic behavior of composite and sandwitch plates”, The Shock and Vibration Digest, vol. 23, pp. 3-14, 1991.
[9] Noor, A. K., “Free vibration of multilayered composite plates”, AIAA Journal, vol. 11, pp. 1038-1039, 1973.
[10] Dawe, D. J. and Roufaeil, D. L., “Rayleigh-Ritz vibration analysis of mindlin plates”, Journal of Sound and Vibration, vol. 85, pp. 263-275, 1980.
[11] Liew, K. M, Wang, C. M. and Kitipornchai, S., “Flexural vibration of shear deformable circular and annular plates on ring supports”, Computer Method in Applied Mechanics and Engineering, vol. 110, pp. 301-315, 1993.
[12] Cheung, Y. K. and Kwok, W. L., “Dynamic analysis of circular and sector thick layered plates”, Journal of Sound and Vibration, vol. 42, pp. 147-158, 1975.
[13] Reddy, J. N. and Kuppusamy, T., “Natural vibration of laminated anisotropic plates”, Journal of Sound and Vibration, vol. 42, pp. 147-158, 1975.
[14] Roufaeil, D. L. and Dawe, D. J., “Vibration analyses of rectangular plates thickness by the spline strip method”, Computers and Structures, vol. 46, pp. 451-463, 1993.
[15] Mizusawa, T., “Vibration of rectangular mindlin plates with tapered thickness by the spline strip method”, Computers and Structures, vol. 46, pp. 451-463, 1993.
[16] Cheung, Y. K. and Zhou, D., “Vibration analysis of symmetrically laminated rectangular plates with intermediate line supports”, Computers and Structures, vol.79, pp.33-41, 2001.
[17] Hatami, S., Azhari, M., Saadatpour, M. M., “Free vibration of moving laminated composite plates”, Composite Structures, vol. 80, pp. 609-620, 2007.
[18] Wang, C. M., Lim, G. T., Reddy, J. N., Lee, K. H., “Relationships between bending solution of reissner and mindlin plate theories”, Engineering Structures, vol. 23, pp. 838-849, 2001
[19] Shimpi, R. P., “Refined plate theory and its variants”, AIAA Journal, vol. 40(1), pp. 137-146,2002.
[20] Murty, A.K., “Higher order theory for vibrations of thick plates”, AIAA Journal, vol. 15(12), pp. 1823-1824, 1977.
[21] Hanna, N. F., Leissa, A. W., “A higher order shear deformation theory for the vibration of thick plates”, Journal of Sound and Vibration, vol. 170(4), pp. 545-555, 1994.
[22] Reddy, J. N., “A simple higher order theory for statics and dynamic of elastic plate”, Mechanics Research Communications, vol. 7, pp. 343-350, 1980.
[23] Naghdi, P. M., “On the theory of thin elastic shells”, Quaterly of Applied Mathematics, vol. 14, pp. 369-380, 1957.
[24] Kant, T., “Numerical analysis of thick plates”, Computer Methods in Applied Mechanics and Engineering, vol. 31(1), pp. 1-18, 1982.
[25] Lo, K. M., Xiang, Y., Kitipornchai, S., “Research on thick plate vibration:a literature survey”, Journal of Sound and Vibration, vol. 180(1), pp. 163-176, 1995.
[26] Nelson, R. B., Lorch, D. R., “A refined theory for laminated orthotropic plates”, Journal of Applied Mechanics, vol. 41, pp.177-183, 1974.
[27] Reddy, J. N., “A refined nonlinear theory of plates with transverse shear deformation”, International Journal of Solids and Structures, vol. 20(9-10), pp. 881-896, 1984.
[28] Reddy, J. N., Phan, N. D., “Stability and vibration of isotropic,orthotropic and laminated plates according to a higher-order shear deformation theory”, Journal of Sound and Vibration, vol. 98(2), 157-170, 1985.
[29] Shimpi, R. P. and Patel, H. G., “A two variable refined plate theory for orthotropic plate analysis”, International Journal of Solids and Structures, vol. 43(22), pp. 6783-6799, 2006.
[30] Kim, S. -E., Thai, H. -T. and Lee, J., “A two variable refined plate theory for laminated composite plates”, Composite Structures, vol. 89(2), pp. 197-205, 2009.
[31] Kim, S. -E., Thai, H. -T., and Lee, J., “Buckling analysis of plates using the two variable refined plate theory”, Thin-Walled Structures, vol. 47(4), pp. 455-462, 2009.
[32] Thai, H. -T. and Kim, S. -E., “Free vibration of laminated composite plates using two variable refined plate theory”, International Journal of Mechanical Sciences, 52(4), pp. 626-633, 2010.
[33] Thai, H. -T., Kim, S. -E., “Levy-type solution for buckling analysis of orthotropic plates based on two variable refined plate theory”, Composite Structures, vol. 93, pp. 1738-1746, 2011.
[34] Thai, H. -T., Kim, S. -E., “Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates”, International Journal of Mechanical Sciences, vol. 54, pp. 269-276, 2012.
[35] Thai, H. -T., Kim, S. -E., “Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory”, Applied Mathematical Modelling, vol. 36, pp. 3870-3882, 2012.
[36] Narendar, S. and Gopalakrishnan, S., “Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory”, Acta Mechanica, vol. 223(2), pp. 395-413, 2012.
[37] Tai, H. -T., Kim, S. -E., “A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates”, Composite Structures, vol. 89, pp. 165-173, 2013.
[38] Malekzadeh, P. and Shojaee, M., “Free vibration of nanoplates based on a nonlocal two-variable refined plate theory”, Composite Structures, vol.95, pp.443-452, 2013.
[39] Tai, H. -T., Choi, D. -H., “Analytical solution of refined plate theory for bending, buckling and vibration of thick plates”, Applied Mathematical Modeling, vol. 37, pp. 8310-8323, 2013.
[40] Thai, H. -T., Choi, D. -H., “Finite element formulation of a refined plate theory for laminated composite plates”, Journal of Composite Materials, vol.0, pp.1-18, 2013.
[41] Thai, H. -T., Uy, B., “Levy solution for buckling analysis of functionaly graded plates based on a refined plate theory”, Journal of Mechanical Engineering Sciences, vol. 227(12), pp. 2649-2664, 2013.
[42] Thai, H. -T., Choi, D. -H., “Levy solution for free vibration analysis of functionally graded plates based on a refined plate theory”, Journal of Civil Engineering, vol. 18(6), pp. 1813-1822, 2014.
[43] Udupa, N. M., Vardan, T. K., “Hierarchical finite element method for rotating beams”, Journal of Sound and Vibration, vol. 138(3), pp. 447-456, 1990.
[44] Bardell, N. S., “Free vibration analysis of skew plates using the hierarchical finite element method”, Computers and Structures, vol. 45(5-6), pp. 841-874, 1992.
[45] Bardell, N. S., “Free vibration analysis of a flat plate using the hierarchical finite element method”, Journal of Sound and Vibration, vol. 151(2), pp. 263-289, 1991.
[46] Beslin, O. and Nicolas, J., “A hierarchical functions set for predicting very high order plate bending modes with any boundary condition”, Journal of Sound and Vibration, vol. 202(5), pp. 633-655, 1977.
[47] Han, W. and Petyt, M. ,“Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method-I:the fundamental mode of isotropic plates”, Computers and Structures, vol. 63(2), pp. 295-308, 1997.
[48] Houmat, A., “An alternative hierarchical finite element formulation applied to plate vibrations”, Journal of Sound and Vibration, vol. 206(2), pp. 201-215, 1997.
[49] Adjerid, S., Aiffa, M., Flaherty, J. E., “Hierarchical finite element bases for triangular and tetrahedral elements”, Computer Methods in Applied Mechanics and Engineering, vol. 190(22), pp. 2925–294, 2001.
[50] Yu, Z., Guo, X., Chu, F. “A multivariable hierarchical finite element for static and vibration analysis of beams”, Finite Elements in Analysis and Design, vol. 46, pp. 625–631, 2010.
[51] Ahmed, N. U. and Basu, K., “Higher order modelling of plates by p-version of finite element method”, Journal of Engineering Mechanics, vol. 119, no. 6, pp. 1228-1242, 1993.
[52] Meirovitch, L. and Baruh, H., “On the inclusion principle for the hierarchical finite element method”, Journal for Numerical Methods in Engineering, vol. 19, pp. 281-291, 1983.
[53] Koutsawa, Y., Gaetano, G. and Belouettar, S., “Hierarchical fem modelling of piezo-electric beam structures”, Composite Structures, vol. 95, pp. 705-718, 2013.
55
[54] West, L. J., Bardell, N. S., Dunsdon, J. M. and Loasby, P. M., “Some limitations associated with the use of k-orthogonal polynomials in hierarchical versions of the finite element method.in structural dynamics:recent advances”, Southampton ISVR:University of Southampton, pp. 217-231, 1997.
[55] Leissa, A. W., Vibration of Plates(NASA SP-160), Washington, D.C.:U.S.Goverment Printing Office, 1969.
[56] Liew, K. M., Lam, K. Y. and Chow, S.T., “Free vibration analysis of rectangular plates using orthogonal plate functions”,