فهرست:
فهرست
1 فصل اول.. 3
1-1 مقدمه. 4
1-2 انواع فین.. 4
1-3 کاربرد فین ها 5
1-4 پیشینه موضوع. 7
2 فصل دوم.. 10
2-1 روش گالرکین : 11
2-1-1 تعریف: 11
2-1-2 کارهای انجام شده با روش گالرکین: 12
2-2 روش کالوکیشن: 12
2-2-1 تعریف: 12
2-2-2 کارهای انجام شده: 13
2-3 روش حداقل مربعات: 13
2-3-1 تعریف: 13
2-3-2 کار انجام شده: 14
2-4 روش تبدیل دیفرانسیل: 15
2-4-1 تعریف: 15
2-4-2 کارهای انجام شده: 17
2-5 روش تجزیه آدومیان: 18
2-5-1 تعریف: 18
2-5-2 کارهای انجام شده: 19
2-6 بهینه سازی و طراحی آزمایش به روش سطح پاسخ. 20
3 فصل سوم.. 21
3-1 ضریب هدایت حرارتی وابسته به دما: 22
3-1-1 بی بعد سازی: 23
3-1-2 فین مستطیلی شکل: 24
3-1-3 فین نمایی: 25
3-1-4 فین محدب: 25
3-1-5 شرایط مرزی : 26
3-2 ضریب انتقال حرارت وابسته به دما: 27
3-3 با تولیدگرمای داخلی: 29
3-3-1 فین با تولید حرارت داخلی وابسته به دما و ضریب هدایت حرارتی ثابت: 30
3-3-2 ضریب حرارتی فین و حرارت تولید شده داخلی را وابسته به دما : 30
3-4 فین حلقوی با پروفیل های مختلف: 31
3-5 فین متخلخل با سطح مقطع مثلثی : 35
3-6 فین شعاعی همراه با انتقال حرارت تابشی: 38
3-7 فین مرطوب: 39
3-8 فین های طولی در حالت گذرا: 43
4 فصل چهارم.. 46
4-1 فین با ضریب هدایتی وابسته. 47
4-1-1 فین مستطیلی: 47
4-1-2 فین نمایی.. 51
4-1-3 فین محدب.. 55
4-1-4 روش تبدیل دیفرانسیل(DTM): 65
4-1-5 فین نمایی: 68
4-1-6 فین محدب: 71
4-2 ضریب انتقال حرارت وابسته به دما: 77
4-3 فین با تولیدگرمای داخلی: 88
4-3-1 حالت اول ضریب حرارتی ثابت و حرارت تولید شده داخلی وابسته به دما : 88
4-3-2 حالت دوم ضریب حرارتی و حرارت تولید شده داخلی وابسته به دما : 91
4-4 فین حلقوی با پروفیل های مختلف: 96
4-5 فین متخلخل با سطح مقطع مثلثی : 103
4-6 فین شعاعی همراه با انتقال حرارت تابشی: 110
4-7 فین مرطوب: 115
4-8 فین طولی در حالت گذرا: 120
5 فصل پنجم.. 125
5-1 جمع بندی نتایج: 126
5-2 ارائه پیشنهادات.. 127
6 مراجع.. 128
منبع:
[1] G. B. Shelly, M. E. Vermaat, j. j. Quasney, Discovering Computers, Course Technology, 2009.
[2] A. Aziz, A. B. Beers-Green, Performance and optimum design of convective–radiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base, Energy Conversion and Management, Vol. 50, No. 10, pp. 2622-2631, 2009.
[3] A. Aziz, F. Khani, Convection–radiation from a continuously moving fin of variable thermal conductivity, Journal of the Franklin Institute, Vol. 348, No. 4, pp. 640-651, 2011.
[4] C. Arslanturk, Performance analysis and optimization of a thermally non-symmetric annular fin, International Communications in Heat and Mass Transfer, Vol. 31, No. 8, pp. 1143-1153, 2004.
[5] A. Rajabi, Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Physics Letters, Vol. 364, No. 1, pp. 33–37, 2007.
[6] A. Aziz, M. N. Bouaziz, A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity, Energy Conversion and Management, Vol. 52, No. 8–9, pp. 2876-2882, 2011.
[7] G. Domairry, M. Fazeli, Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity, Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, pp. 489-499, 2009.
[8] D. D. Ganji, Z. Z. Ganji, H. D. Ganji, Determination of temperature distribution for annual fins with temperature-dependent thermal conductivity by HPM, Therm Sci, Vol. 15, pp. 111–5, 2011.
[9] M. N. Bouaziz, S. Rechak, S. Hanini, Y. Bal, K. Bal, Étude des transferts de chaleur non linéaires dans les ailettes longitudinales, International Journal of Thermal Sciences, Vol. 40, No. 9, pp. 843-857, 2001.
[10] S. Kiwan, Effect of radiative losses on the heat transfer from porous fins, International Journal of Thermal Sciences, Vol. 46, No. 10, pp. 1046-1055, 2007.
[11] S. Saedodin, S. Sadeghi, Temperature distribution in long porous fins in natural convection condition, Middle-East J Sci Res, Vol. 7, pp. 812, 2013.
[12] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, International Journal of Thermal Sciences, Vol. 55, No. 0, pp. 69-75, 2012.
[13] M. Hatami, D. D. Ganji, Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, International Journal of Refrigeration, Vol. 40, No. 0, pp. 140-151, 2014.
[14] M. Hatami, D. D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method, Energy Conversion and Management, Vol. 78, No. 0, pp. 347-358, 2014.
[15] M. Hatami, D. D. Ganji, Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4), Ceramics International, Vol. 40, No. 5, pp. 6765-6775, 2014.
[16] M. Hatami, D. D. Ganji, Thermal performance of circular convective–radiative porous fins with different section shapes and materials, Energy Conversion and Management, Vol. 76, No. 0, pp. 185-193, 2013.
[17] J. L. Threlkeld, Thermal environmental engineering Englewood Cliffs, 1970.
[18] F. C. McQuiston, Fin efficiency with combined heat and mass transfer, ASHRAE Trans Vol. 81, pp. 350-355, 1975.
[19] A. H. Elmahdy, R. C. Biggs, Efficiency of extended surfaces with simultaneous heat and mass transfer, ASHRAE Trans, Vol. 30, pp. 135–143, 1988.
[20] A. Kilic, K. onat, The optimum shape for convecting rectangular fins when condensation occurs, Warme Stoffubertrag, Vol. 15, pp. 125-133, 1981.
[21] M. H. Sharqawy, S. M. Zubair, Efficiency and optimization of an annular fin with combined heat and mass transfer – an analytical solution, Int J Refrigerat, Vol. 30, pp. 751-7, 2007.
[22] D. Ganji , M. Rahgoshay, M. Rahimi, Numerical Inverstigation of fin Efficiency and Temperture distribution of conductive,convective and radiative fins, IGRRAS, 2010.
[23] A. Horvat, B. Mavko, Calculation of conjugate heat transfer problem with volumetric heat generation using the Galerkin method, Applied Mathematical Modelling, Vol. 29, No. 5, pp. 477-495, 2005.
[24] I. Rahimi Petroudi, D. D. Ganji, M. Khazayi Nejad, J. Rahimi, E. Rahimi, A. Rahimifar, Transverse magnetic field on Jeffery–Hamel problem with Cu–water nanofluid between two non parallel plane walls by using collocation method, Case Studies in Thermal Engineering, Vol. 4, No. 0, pp. 193-201, 2014.
[25] H. Goodarzian, S. A. R. Sahebi, M. Omran Shobi, J. Safaee, A collocation solution on the optimization of straight fin with combined heat and mass transfer, Physical Sciences, Vol. 9, 2011.
[26] D. D. Ganji, E. M. Languri, Mathematical Methods In Nonlinear Heat Transfer: A Semi-Analytical Approach: Xlibris Corporation, 2010.
[27] M.-J. Jang, C.-L. Chen, Y.-C. Liu, Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation, Vol. 121, No. 2–3, pp. 261-270, 2001.
[28] P. L. Ndlovu, R. J. Moitsheki, Application of the two-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Communications in Nonlinear Science and Numerical Simulation, Vol. 18, No. 10, pp. 2689-2698, 2013.
[29] A. Abbasov, A. Bahadir, The investigation of the transient regimes in the nonlinear systems by the generalized classical method, Math Probl Eng, Vol. 19, No. 5, pp. 503, 2005.
[30] A. Moradi, Analytical solution for fin with temperature dependent heat transfer coefficient, Int J Eng Appl Sci, Vol. 3, pp. 1-12, 2011.
[31] B. Kundu, D. Barman, S. Debnath, An analytical approach for predicting fin performance of triangular fins subject to simultaneous heat and mass transfer, Int J Refrig, No. 31, pp. 20, 2008.
[32] P. K. Roy, H. Mondal, A. Mallick, A decomposition method for convective–radiative fin with heat generation, Ain Shams Engineering Journal, No. 0.
[33] C.-H. C. Chiu, Cha’o-Kuang, A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, Heat and Mass Transfer, Vol. 45, pp. 2067-2075, 2002.
[34] R. K. Singla, R. Das, Adomian decomposition method for a stepped fin with all temperature-dependent modes of heat transfer, International Journal of Heat and Mass Transfer, Vol. 82, No. 0, pp. 447-459, 2015.
[35] M. Hatami, M. Jafaryar, D. D. Ganji, M. Gorji-Bandpy, Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques, International Communications in Heat and Mass Transfer, Vol. 57, No. 0, pp. 254-263, 10//, 2014.
[36] M. Hatami, D. D. Ganji, M. Gorji-Bandpy, Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition, Applied Thermal Engineering, No. 0.
[37] D. D. Ganji, M. Nourollahhi, M. Rostanian, A Comparison of Variational Iteration Method with Adomian’s Decomposition Method in Some Highly Nonlinear Equations, Intl J of Sci & Tech, Vol. 2, No. 2, pp. 179-188, 2007.
[38] F. P. Incropera, D. P. DeWitt, Introduction to Heat Transfer: Wiley, 2011.
[39] Z. Z. Ganji, D. D. Ganji, A. D. Ganji, M. Rostamian, Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method, Num Meth for Partial Diff Equs, No. DOI 10.1002/num.20420.
[40] S. Kim, -. H. J. Moon, -. H. C. Huang, An approximate solution of the nonlinear fin problem with temperaturedependent thermal conductivity and heat transfer coefficient, Appl Phys, Vol. 40, pp. 4382-89, 2007.
[41] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers Manage, Vol. 74, pp. 9-16, 2013.
[42] G. R. Reddy , A. Bakier Thermal analysis of natural convection and radiation in porous fins, Int Commun Heat Mass Transfer, Vol. 38, pp. 638-45, 2011.
[43] D. Nield, A. Bejan, Convection in porous media, New York: Springer, 2006.
[44] B. Kundu, D. Bhanja, K.-S. Lee, A model on the basis of analytics for computing maximum heat transfer in porous fins, International Journal of Heat and Mass Transfer, Vol. 55, No. 25–26, pp. 7611-7622, 2012.
[45] R. siegle, J. Howell, Thermal radiation heat transfer, 1992.
[46] S. D. Coskun, M. T. Atay, Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis, Math.Probl. Eng, pp. 15, 2007.
[47] T. H. chilton, A. P. colburn, Mass transfer (absorption) coefficients, Ind. Eng.Chem, Vol. 26, pp. 1183-1187, 1934.
[48] A. D. Kraus, A. W. Aziz, J., Extended surface heat transfer, New York: Wiley, 2001.
[49] H. C. Unal, An analytical study of boiling heat transfer from a fin, Int J Heat Mass Transfer, Vol. 31, pp. 1483-96, 1988.