فهرست:
فهرست اشکال هشت
فهرست جداول شانزده
فهرست علائم و نمادها هجده
چکیده. 1
فصل اول: مقدمه. 2
1-1 پیشگفتار. 2
1-2 خنک کاری تشعشعی.. 4
1-3 آینه های حرارتی.. 5
1-4 تعریف مسئله. 5
1-5 اهداف پژوهش.... 6
1-6 روش انجام پژوهش.... 6
فصل دوم: مروری بر کارهای انجام شده. 7
2-1 کارهای انجام شده قبلی.. 7
فصل سوم: محاسبه خواص تشعشعی لایه های نازک.. 24
3-1 ضریب شکست و بردار موج مختلط... 24
3-2 پولاریزاسیون s و p.. 25
3-3 محاسبه خواص تشعشعی سطح مشترک دو محیط... 25
3-4 محاسبه خواص تشعشعی یک لایه ضخیم.. 27
3-5 محاسبه خواص تشعشعی یک لایه نازک... 29
3-6 محاسبه خواص تشعشعی یک ساختار چند لایه. 31
3-6-1 پلاریزاسیون s. 31
3-6-2 پلاریزاسیون p.. 33
3-7 محاسبه خواص تشعشعی یک ساختار چند لایه شامل یک لایه ضخیم.. 34
فصل چهارم: مدلسازی و روش بهینه سازی. 37
4-1 خنک کاری تشعشعی.. 37
4-2 آینه های حرارتی.. 42
4-3 ضریب جذب ماکزیمم در محدوده تشعشع خورشید.. 43
4-4 ضریب عبور ماکزیمم در محدوده تشعشع خورشید.. 43
4-5 ضریب بازتاب ماکزیمم در محدوده تشعشع خورشید.. 44
4-6 روش بهینه سازی.. 44
4-6-1 الگوریتم ژنتیک.... 44
شش
4-6-2 روش عملیات حرارتی شبیه سازی شده 46
فصل پنجم: ارائه و تحلیل نتایج.. 49
5-1 اعتبارسنجی محاسبات... 49
5-2 خنک کاری تشعشعی.. 53
5-2-1 خنک کاری در طول روز. 53
5-2-2 خنک کاری در شب... 68
5-2-3 خنک کاری با استفاده از مواد با قابلیت انحلال در آب... 76
5-3 آینه های حرارتی.. 81
5-3-1 لایه ضخیم SiO2. 82
5-3-2 لایه ضخیم BaTiO3. 88
5-4 ضریب جذب ماکزیمم در محدوده تشعشعی خورشید.. 97
5-4-1 ضریب جذب ماکزیمم سلولهای خورشیدی لایه نازک.... 101
5-5 ضریب بازتاب ماکزیمم در محدوده تشعشعی خورشید.. 103
5-6 ضریب عبور ماکزیمم در محدوده تشعشعی خورشید.. 104
فصل ششم: نتیجه گیری و پیشنهاد. 105
6-1 نتیجه گیری.. 105
6-2 پیشنهاد برای پژوهش های آتی.. 106
پیوست 1: نحوه محاسبه خواص تشعشعی به کمک نظریه الکترودینامیک ........................................................................108
پ1-1 معادلات مکسول............................................................................................................................................108
پ1-2 معادله موج.............. ......................................................................................................................................110
پ1-2-1 فرض هدایت الکتریکی صفر... ......................................................................................................................110
پ1-2-2 فرض هدایت الکتریکی غیر صفر............ .......................................................................................................113
پ1-3 بردار پویینتینگ..............................................................................................................................................114
پ1-4 محاسبه خواص تشعشعی سطح مشترک دو محیط................... ........................................................................117
پ1-4-1 پلاریزاسیون s......... ......................................................................................................................................117
پ1-4-2 پلاریزاسیون p......... ......................................................................................................................................120
پ1-5 محاسبه خواص تشعشعی یک ساختار چند لایه....... .......................................................................................123
پ1-5-1 پلاریزاسیون s......... ......................................................................................................................................123
پ1-5-2 پلاریزاسیون p...............................................................................................................................................127
پیوست 2: نمودارهای خواص تشعشعی ساختارهای بهینه. 130
پ2-1-نمودارهای ساختارهای بهینه خنک کاری در روز. 130
پ2-2-نمودارهای ساختارهای بهینه خنک کاری در شب... 144
هفت
پ2-3-نمودارهای ساختارهای بهینه آینه حرارتی.. 150
پ2-4-نمودارهای ساختارهای بهینه با ضریب جذب بالا.. 156
مراجع. 162
منبع:
[1] P.J. Timans, J. Li, N. Acharya, "Rapid Thermal Processing", Handbook of Semiconductor Manufacturing Technology, Y. Nishi and R. Doering (eds.), Marcel Dekker, Inc., New York , 2000
[2] Z.M. Zhang, "Surface Temperature Measurement Using Optical Techniques", Annual Review of Heat Transfer, Vol. 11 (2000) 351-411
[3] سید امیر عباس علومی «مطالعه پارامتری خواص تشعشعی ساختارهای چند لایه ای بسیار نازک» ، رساله دکتری ، دانشگاه صنعتی اصفهان، دانشکده مهندسی مکانیک، 1389
[4] C.G. Granqvist, "Solar energy materials", Advanced Materials, Vol. 15, Issue 21 (2003) 1789-1803
[5] M.Muselli, "Passive cooling for air-conditioning energy savings with new radiative low-cost coatings", Energy and Buildings, Vol. 42, Issue 6 (2010) 945-954
[6] A.R. Gentle, J.L.C. Aguilar, G.B. Smith, "Optimized cool roofs: Integrating albedo and thermal emittance with R-value", Solar Energy Materials and Solar Cells, Vol. 95, Issue 12 (2011) 3207-3215
[7] A.R. Gentle, K.L. Dybdal, G.B. Smith, "Polymeric mesh for durable infra-red transparent convection shields: Applications in cool roofs and sky cooling", Solar Energy Materials and Solar Cells, Vol. 115 (2013) 79-85
[8] T.M.J. Nilsson, W.E. Vargas, G.A. Niklasson, C.G. Granqvist, "Condensation of water by radiative cooling", Renewable Energy, Vol. 5, Issue 1-4 (1994) 310-317
[9] M. Muselli, D. Beysens, J. Marcillat, I. Milimouk, T. Nilsson, A. Louche, "Dew water collector for potable water in Ajaccio (Corsica Island, France)", Atmospheric Research, Vol. 64, Issue 1-4 (2002) 297-312
[10] A.F.G. Jacobs, B.G. Heusinkveld, S.M. Berkowicz, "Passive dew collection in a grassland area, The Netherlands", Atmospheric Research, Vol. 87, Issue 3-4 (2008) 377-385
[11] T.M.J. Nilsson, G.A. Niklasson, "Optimization of optical properties of pigmented foils for radiative cooling applications: model calculations", Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X (1991) 169-182
[12] C.G. Granqvist, A. Hjortsberg, T.S. Eriksson, "Radiative cooling to low temperatures with selectively IR-emitting surfaces", Thin Solid films, Vol. 90 (1982) 187-190
[13] M.F. Al-Kuhaili, A.H. Al-Aswad, S.M.A. Durrani, I.A. Bakhtiari, "Transparent heat mirrors based on tungsten oxide–silver multilayer structures", Solar Energy, Vol. 83, Issue 9 (2009) 1571-1577
[14] Fu, Ceji, Zhang, Zhuomin M. and Tanner, David B., “Radiative Properties of Multilayer Thin Films with Positive and Negative Refractive Indexces”, ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, 2002.
[15] N. M. Ravindra, K. Ravindra, S Mahendra, B. Sopori, A.T. Fiory, "Modeling and Simulation of Emissivity of Silicon-Related Materials and Structures", Journal of Electronic Materials, Vol. 32, No. 10 (2003) 1052-1058
[16] B.J. Lee, Z.M. Zhang, E.A. Early, D.P. DeWitt, B.K. Tsai, "Modeling Radiative Properties of Silicon with Coatings and Comparison with Reflectance Measurements", Journal of Thermophysics and Heat Transfer, Vol. 19, No4 (2005) 558-565, 2005.
[17] H.J. Lee, B.J. Lee, Z.M. Zhang, "Modeling the radiative properties of semitransparent wafers with rough surfaces and thin-film coatings", Journal of Quantitative Spectroscopy & Radiative Transfer , Vol. 93 (2005) 185–194
[18] T. Böhnke, H. Kratz, A. Hultåker, J. Köhler, M. Edoff, A. Roos, C.G. Ribbing, G. Thornell, "Surfaces with high solar reflectance and high thermal emittance on structured silicon for spacecraft thermal control", Optical Materials, Vol. 30 (2008) 1410–1421
[19] B. J. Lee and Z. M. Zhang, "Rad-Pro: effective software for modeling radiative properties in rapid thermal processing", in Proc. 13th IEEE Annu. Int. Conf. Adv. Thermal Processing of Semiconductors (RTP’2005), pp. 275–281, Santa Barbara, CA, October 4–7, 2005.
[20] E.M. Lushiku, T.S. Eriksson, A. Hjortsberg, C.G. Granqvist, "Radiatiove cooling to low temperatures with selectively infrared-emitting gases", Solar and Wind technology, Vol. 1, Issue 2 (1984) 115-121
[21] T.S. Eriksson, E.M. Lushiku, C.G. Granqvist, "Materials for radiative cooling to low temperature", Solar Energy Materials, Vol. 11, Issue 3 (1984) 149-161
[22] T.S. Eriksson, S.J. Jiang, C.G. Granqvist, "Surface coatings for radiative cooling applications: Silicon Dioxide and Silicon Nitride made by reactive rf-sputtering", Solar Energy Materials, Vol. 12 (1985) 319-325
[23] T.M.J. Nilsson, G.A. Niklasson, C.G. Granqvist, "A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene", Solar Energy Materials and Solar Cells, Vol. 28, Issue 2 (1992) 175-193
[24] D.M. Diatezua, P.A. Thiry, A. Dereux, R. Caudano, "Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications", Solar Energy Materials and Solar Cells, Vol. 40, Issue 3 (1996) 253-259
[25] M. Tazawa, P. Jin, S. Tanemura, "Thin film used to obtain a constant temperature lower than the ambient", Thin Solid Films, Vol. 281-282 (1996) 232-234
[26] T. Engelhard, E.D Jones, I. Viney, Y. Mastai, G. Hodes, "Deposition of tellurium films by decomposition of electrochemically-generated H2Te: application to radiative cooling devices", Thin Solid Films, Vol. 370, Issue 1-2 (2000) 101-105
[27] Z. Liang, H. Shen, J. Li, N. Xu, "Microstructure and optical properties of silicon nitride thin films as radiative cooling materials", Solar Energy, Vol. 72, Issue 6 (2002) 505-510
[28] K.D. Dobson, G. Hodes, Y. Mastai, "Thin semiconductor films for radiative cooling applications", Solar Energy Materials and Solar Cells, Vol. 80, Issue 3 (2003) 283-296
[29] M. Benlattar, E.M. Oualim, M. Harmouchi, A. Mouhsen, A. Belafhal, "Radiative properties of cadmium telluride thin film as radiative cooling materials", Optics Communications, Vol. 256, Issue 1-3 (2005) 10-15
[30] M. Benlattar, E.M. Oualim, T. Mouhib, M. Harmouchi, A. Mouhsen, A. Belafhal, "Thin cadmium sulphide film for radiative cooling application", Optics Communications, Vol. 267, Issue 1 (2006) 65-68
[31] T. Mouhib, A. Mouhsen, E.M. Oualim, M. Harmouchi, J.P. Vigneron, P. Defrance, "Stainless steel/tin/glass coating as spectrally selective material for passive radiative cooling applications", Optical Materials, Vol. 31, Issue 4 (2009) 673-677
[32] S.N. Bathgate, S.G. Bosi, "A robust convection cover material for selective radiative cooling applications", Solar Energy Materials and Solar Cells, Vol. 95, Issue 10 (2011) 2778-2785
[33] E. Valkonen, B. Karlsson, "Optimization of metal-based multilayers for transparent heat mirrors", Energy Research, Vol. 11 (1987) 397-403
[34] Z.C. Jin, I. Hamberg, C.G. Granqvist, B.E. Sernelius, K.F. Berggren, "Reactively sputtered ZnO: Al films for energy-efficient windows", Thin Solid Films, Vol. 164 (1988) 381-386
[35] C.Choudhury, K. Sehgal, "Chemical vapour deposited SnO2:Sb heat mirror coatings for cylindrical solar collectors", Energy Conversion and Management, Vol. 29, Issue 4 (1989) 265-272
[36] K.E. Andersson, M. Veszelei, A. Roos, "Zirconium nitride based transparent heat mirror coatings - preparation and characterisation", Solar Energy Materials and Solar Cells, Vol. 32, Issue 2 (1994) 199-212
[37] X. Zhang, S. Yu, M. Ma, "ZnS/Me heat mirror systems", Solar Energy Materials and Solar Cells, Vol. 44, Issue 3 (1996) 279-290
[38] C. Jie, G. Xin-shi, H. Xing-fang, "Single-layer heat mirror films and an improved method for evaluation of its optical and radiative properties in infrared", Solar Energy Materials & Solar Cells, Vol. 55 (1998) 323-329
[39] M. Tazawa, M. Okada, K.Yoshimura, S. Ikezawa, "Photo-catalytic heat mirror with a thick titanium dioxide layer", Solar Energy Materials & Solar Cells, Vol. 84, Issue 1-4 (2004) 159-170
[40] G. Alvarez, J.J. Flores, J.O. Aguilar, O. Gomez-Daza, C.A. Estrada, M.T.S. Nair, P.K. Nair, "Spectrally selective laminated glazing consisting of solar control and heat mirror coated glass: preparation, characterization and modelling of heat transfer", Solar Energy, Vol. 78, Issue 1 (2005) 113-124
[41] G.H. Dobrikov, M.M. Rassovska, N.M. Andreev, S.I. Boyadzhiev, K.A. Gesheva, T.M. Ivanova, P.S. Sharlandjiev, D.I. Nazarowa, "Development of transparent heat mirrors based on metal oxide thin film structures", Thin Solid Films, Vol. 518, Issue 4 (2009) 1091-1094
[42] M.F. Al-Kuhaili, A.H. Al-Aswad, S.M.A. Durrani, I.A. Bakhtiari, "Energy-saving transparent heat mirrors based on tungsten oxide–gold WO3/Au/WO3 multilayer structures", Solar Energy, Vol. 86, Issue 11 (2012) 3183-3189
[43] Klaver, A., Metselaar, J.W., Zeman, M, Proceedings of 20th European PhotoVoltaicSolar Energy Conference, Barcelona, Spain, p. 1612, June 6–10, 2005.
[44] E.J. Simburger, J.H. Matsumoto, T.W. Giants, "Mater. Sci. Eng., B, Solid-State Mater", Adv.Technol. ,Vol. 116 (2005)
[45] K.i Shimazaki, M. Imaizumi , K. Kibe, "SiO2 and Al2O3/SiO2 coatings for increasing emissivity of Cu(In, Ga)Se2 thin-film solar cells for space applications", Thin Solid Films 516 (2008) 2218–2224
[46] S. Hajimirza, G. El Hitti, A. Heltzel, J. Howell, “Using inverse analysis to find optimum nano-scale radiative surface patterns to enhance solar cell performance.” International Journal of Thermal Sciences xxx (2012) 1-10
[47] Z.M. Zhang, "Nano/Microscale Heat Transfer", McGraw-Hill, 2007
[48] D.J. Griffiths, "Introduction to Electrodynamics", 3rd Edition, Prentice Hall, 1999
[49] R. Siegel, J.R. Howell, "Thermal Radiation Heat Transfer", 4th edition, Taylor & Francis, 2002
[50] Y.A. Çengel, "Heat Transfer: A Practical Approach", 3rd Edition, McGraw-Hill, 2007
[51] Website for NREL’s AM 1.5 Standard Dataset: http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html, accessed August 19, 2014
[52] E.D. Palik, "Handbook of Optical Constants of Solids",Vol. 1-2, Academic Press, 1998
[53] S.S. Rao, "Engineering Optimization: Theory and Practice", 4th Edition, John Wiley & Sons, 2009
[54] D.E. McCarthy, "The Reflection and Transmission of Infrared Materials: 1, Spectra from 2 50 Microns", Applied Optics, Vol. 2, Issue 6 (1963) 591-595
[55] W.W.Gregg, K.L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres", Limnology And Oceanography, Vol. 35, Issue 8 (1990) 1657-1675
[56] L.T. Wong, W.K. Chow, "Solar radiation model", Applied Energy, Vol. 69 (2001) 191-224
[57] B B.C. Smith, "Fundamentals of Fourier Transform Infrared Spectroscopy", 2nd edition, Taylor & Francis, 2011
[58] G.H. Bauer, "Thin film solar cell materials", Applied Surface Science, Vol. 70-71 (1993) 650-659
[59] J. Sharp, D. Pulfrey, G.A. Umana-Membreno, L. Faraone, J.M. Dell, "Modeling and Design of a Thin-Film CdTe/Ge Tandem Solar Cell", Journal of Electronic Materials, Vol. 41, Issue 10 (2012) 2759-2765