فهرست:
فصل اول: مقدمه 1
فصل دوم: پیشینه تحقیق 7
2-1- مروری بر تحقیقات گذشته 9
2-2- هدف 13
فصل سوم: تحلیل معکوس 15
3-1- مفاهیم اساسی تحلیل معکوس 17
3-2- تحلیل معکوس و هموارسازی (تیخونوف) 21
3-3- معادلات حاکم بر تغییر فرم دینامیکی ورق با درنظر گرفتن ضریب میرایی 23
فصل چهارم: روش انجام تحقیق 27
4-1- روش انجام تحلیل معکوس 29
4-2- شناسایی بار دینامیکی 30
4-3- ماتریس حساسیت 34
4-4- محاسبه ضریب هموارسازی 35
4-5- هموارسازی ثانویه 35
4-6- شناسایی محل اثر نیرو 37
فصل پنجم: مفاهیم اندازهگیری با کرنشسنج 43
5-1- مقدمه 45
5-2- محاسبه کرنش 50
5-3- رز کرنش 54
5-4- گونههای مختلف پل وتستون 56
5-5- متعادل کردن پل وتستون 59
5-6- کالیبره کردن 62
5-7- مفاهیم تقویتکنندهها 64
5-8- انواع نویز 68
5-9- سیستم ثبت داده و مکانیزم اندازهگیری کرنش در این پایاننامه 69
فصل ششم: مثالهای حل شده 73
6-1- مقدمه 75
6-2- مثالهای مدلسازی شده جهت محاسبه توزیع زمانی نیرو با نرم افزار انسیس 75
6-3- مثالهای مدلسازی شده جهت شناسایی محل اثر نیرو با نرم افزار انسیس 93
6-4- مثالهای محاسبه توزیع زمانی نیرو با نتایج آزمایشگاهی 106
فصل هفتم: نتیجهگیری و پیشنهادات 121
فهرست منابع 126
چکیده به زبان انگلیسی 141
منبع:
[1] Hadamard, J. (1923), “Lectures on Cauchy's problem in linear partial differential equations”, New haven, Yale university press.
[2] Goodier, J. N., Jahsman, W. E., Riperger, E. A. (1959), “An experimental surface wave method for recording force-time curves in elastic impacts”, journal of applied mechanics, Vol. 26, No. 3, pp. 3-7.
[3] Hsu, N. N., Simmons, J. A., Hardy, S. C. (1977), “An approach to acoustic emission signal analysis-theory and experiment”, Materials evaluation, Vol. 35, No. 10, pp. 100-106.
[4] Michaels, J. E., Michaels, T. E., Sachse, W. (1981), “Applications of deconvolution to acoustic emission”, Signal analysis and material evaluation, Vol. 39, No. 11, pp. 1032-1036.
[5] Doyle, J. F. (1984), “An experimental method for determining the dynamic contact law”, Experimental mechanics, Vol. 24, No. 1, pp. 10-16.
[6] Doyle, J. F. (1984), “Further development in determining the dynamic contact law”, Experimental mechanics, Vol. 24, No. 4, pp.265-270.
[7] Doyle, J. F. (1987), “Determining the contact force during the transverse impact of plates”, Experimental mechanics, Vol. 27, No.1, pp. 68-72.
[8] Michaels, J. E., Pao, Y. H. (1985), “The inverse source problem for an oblique force on an elastic plate.”, The journal of the acoustical society of America, Vol. 77, No. 6, pp. 2005-2011.
[9] Michaels, J. E., Pao, Y. H. (1986), “Determination of dynamic forces from wave motion measurements”, Journal of applied mechanics, Vol. 53, No. 1, pp. 61-67.
[10] Hollandsworth, P. E., Busby, H. R. (1989), “Impact force identification using the general inverse technique”, International journal of impact Engineering, Vol. 8, pp. 315-322.
[11] Wu, E., Yeh, J. C., Yen, C. S. (1994), “Impact on composite laminated plates: an inverse method”, International journal of impact engineering, Vol. 15, pp. 417-433.
[12] Inoue, H., Ikeda, N., Kishimoto, K., Shibuya, T., Koizumi T. (1995), “Inverse analysis of the magnitude and direction of impact force”, JSME International journal Series A, Vol. 38, pp. 84-91.
[13] Martin, M. T., Doyle, J. F. (1996), “Impact force identification from wave propagation responses.”, International journal of impact engineering, Vol. 18, No. 1, pp. 65-77.
[14] Gaul, L., Hurlebaus, S. (1999), “Determination of the impact force on a plate by piezoelectric film sensors”, Archive of applied mechanics, Springer-Verlag, Vol. 69, pp. 691-701.
[15] Chan, T. H. T., Law, S. S. Yung, T. H. (1994), “An interpretive method for moving force identification”, Journal of sound and vibration, Vol. 219 (3-1), pp. 503-524.
[16] Zhu, X. Q., Law, S. S., Bu, J. Q. (2006), “A state space formulation for moving loads identification”, Journal of vibration and acoustics, Vol. 128, pp. 509-520.
[17] Gaul, L., Hurlebaus, S. (1997), “Identification of the impact location a plate using wavelets”, Signal Process, pp. 783-795.
[18] Liu, G. R., Ma, W. B., Han, X. (2002), “An inverse procedure for identification of loads on composite laminates”, Composites Part B: Engineering, Vol. 33, No. 6, pp. 425-432.
[19] Yanyutin, E.G., Yanchevsky, I.V. (2004), “Identification of an impulse load acting on an axisymmetrical hemispherical shell”, International journal of solids and structures, Vol. 41, No. 13, pp. 3643-3652.
[20] Uhl, T. (2007). “The inverse identification problem and its technical application”, Archive of applied mechanics, Springer-Verlag, Vol. 77, pp. 325-337.
[21] Gunawan, F. E., Homma, H., Kanto, Y. (2006), “Two-step bsplines regularization method for solving an ill-posed problem of impact-force reconstruction”, Journal of Sound and Vibration, Vol. 297, pp. 200-214.
[22] Hu, N. Fukunaga, H., Matsumoto, S., Yan, B., Peng, X. H. (2007), “An efficient approach for identifying impact force using embedded piezoelectric sensors”, International Journal of Impact Engineering, Vol. 34, No. 7, pp. 1258-1271.
[23] Lee, S. K. (2008), “Identification of impact force in thick plates based on the elastodynamics and time-frequency method (Part I: Theoretical approach for identification the impact force based on elastodynamics)”, the Journal of Mechanical Science and Technology.
[24] زارع، محمود رضا، همتیان، محمد رحیم و خواجه پور، سالار. (1386)." تخمین بارهای آیرودینامیکی وارد شونده به سازههای هوایی بوسیله اندازهگیری کرنش"، مجموعه مقالات نخستین همایش تخصصی سازههای هوایی و سیستمهای جدایش، سازمان صنایع هوا فضا
[25] همتیان، محمد رحیم، زارع، محمودرضا و خواجه پور، سالار. (1386)."محاسبه معکوس بارهای اعمالی به ورقهای کامپوزیتی با رفتار غیر خطی"، در مجموعه مقالات پانزدهمین کنفرانس سالانه (بین المللی) مهندسی مکانیک، ایران، تهران، دانشگاه صنعتی امیرکبیر.
[26] Liu, G. R., Han, X. (2003), “Computational inverse techniques in nondestructive evaluation”, New York: CRC Press.
[27] Tikhonov, A.N., Arsenin, V.Y. (1977): “Solutions of ill-posed problems”, John-Wiley & Sons, New York.
[28] Kazemi, M., Hematiyan, M.R. (2009), “An efficient inverse method for identification of the location and time history of an elastic impact load”: Testing and Evaluation.
[29] Hematiyan, M.R., Karami, G. (2003), “A boundary elements pseudo heat source method formulation for inverse analysis of solidification problems”: Springer –Verlag.
[30] Khosravifard, A., Hematiyan, M. R. (2011), “Inverse analysis of solidification problems using the mesh-free radial point interpolation method”, Computer Modeling in Engineering and Sciences, 78, 185–208.
[31] Boukrika, Z., Perrotina, P. (2011), “Experimental impact force location and identification using inverse problems: application for a circular plate”, International journal of mechanics, Issue 1, Vol. 5.
[32] Hrenikoff, A. (1941), “Solution of problems in elasticity by the framework method”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 8, pp. 169- 175.
[33] Claough, R. W. (1960), “The finite element method in plane stress analysis”, Journal of Structures Division, ASCE, Proceedings of 2nd Conference on Electronic Computations, pp. 345- 378.
[34] Timoshenko, S., Woinowsky-Krieger, S. (1970), “Theory of plates and shells”, Mc Graw Hill, second edition.
[35] Jawad, M. H. (2004), “Theory and design of plate and shell structures”, New York, ASME Press, Hardcover.
[36] Szilard R. (2004), “Theories and applications of plate analysis”: Classical, Numerical and Engineering Methods, John Wiley & Sons, Inc.
[37] Liu, G. R., Han, X. (2003), “Computational inverse techniques in nondestructive evaluation”. New York: CRC Press.
[38] Gladwell, G. M. L. (2004). “Inverse problems in vibration”, Second edition, New York: Kluwer Academic Publishers, Springer.
[39] Beck, J. V., Arnold, K. J. (1977), “Parameter estimation in engineering and science”. New York: Wiley Interscience.
[40] Beck, J. V., Blackwell, B., Clair, C. R. S. T. (1985), “Inverse heat conduction, ill posed problems”. New York: Wiley Interscience.
[41] Engl, H. W., Hanke, M., Neubauer, A. (2000), “Regularization of inverse problems”. Netherlands: Kluwer Academic Publishers.
[42] Tikhonov, A. N., Goncharsky, A. V., Yagola, A. G. (1990), “Numerical methods for the solution of ill-posed problems”, Dordrecht: Kluwer Academic Publishers.
[43] Ramm, A. G. (2005), “Inverse problems”, Springer Verlag, New York.
[44] Kazemi, M. (2008), “Dynamic loads identification based on time integrals of strain measurements”, mechanical engineering department of Shiraz university.
[45] Han, H. (2008), “Strain measurements” (Chapter 10) ST3.
[46] Craig, J. I. (2000), “Resistance strain gage circuits”, AE3145, spring.
[48] Pallas-Areny, R., John, G. (1991), “Sensors and signal conditioning”, John Wiley, New York.
[49] Sheingold D. (Ed.), (1980), “Transducer interfacing handbook”, Analog Devices, Inc.
[50] Richard G. B. (1999), “Advanced strength and applied stress analysis”, (Second Edition), McGraw-Hill.
[51] Dally, J. W., Riley, W. F. (1991), “Experimental stress analysis”, 3rd ed., McGraw-Hill, New York.
[52] FLA-5-11 data sheet, (2008), “Product guide”, PAN E-950N, TML-JAPAN.
[53] Kobayashi, S. (Ed.), (1987), “Handbook on experimental mechanics”, Prentice Hall, Englewood Cliffs, NJ.
[54] Vishy precision group, (2010), “Shunt calibration of strain gage instrumentation instrumentation”, Micro-Measurements, Tech Note TN-514.
[55] INA 128 datasheet, Texas Instruments Incorporated, (2000).
[56] Sheingold, D. Editor, (1980), “Transducer interfacing handbook”, Analog, Devices, Inc.
[57] Mancini, R. Editor, (2002), “Opamp noise theory and applications”, Literature Number SLOA082, Chapter 10.
[58] Mancini, R. (1999), Texas Instruments Application Report, “Noise analysis in operational amplifier circuits”, SLVA043A.
[59] Manual μDAQ & rugged μDAQ, Eagle