فهرست:
فهرست مطالب
فصل اول: معرفی... 1
مقدمه 2
1-1 مروری بر روشهای افزایش انتقال حرارت... 2
1-1-1 میکروکانالها. 2
1-1-1 مواد افزودنی به مایعات... 3
1-2 نانوسیال 3
فصل دوم: نانوسیال و تعیین خواص آن.. 4
مقدمه 5
2-1 کاربردهای نانوسیال.. 5
2-2 پارامترهای تأثیرگذار بر ضریب هدایت حرارتی... 6
2-3 تعیین خواص نانوسیال.. 6
2-3-1 دانسیته.. 7
2-3-2 ظرفیت گرمایی ویژه. 7
2-3-3 ضریب هدایت حرارتی... 7
2-3-4 لزجت دینامیکی... 8
فصل سوم: میکروکانال.. 9
مقدمه 10
3-1 دلایل گرایش به ابعاد میکرو. 10
3-2 دستهبندی کانالها از لحاظ ابعاد. 10
3-3 اثرات ابعادی در میکروکانال.. 11
3-3-1 اثر ورودی... 11
3-3-3 اتلاف لزجی... 13
فصل چهارم: سیالات غیرنیوتنی... 14
مقدمه 15
4-1 معرفی سیالات غیرنیوتنی... 16
4-2 رفتار مستقل زمانی سیال.. 17
4-2-1 رفتار نازک برشی... 18
4-2-1-1 معادله سیال توانی یا استوالد دی وائل... 19
4-2-1-1 معادله ویسکوزیته کراس.... 21
4-2-1-3 معادله سیال الیس.... 21
4-2-2 رفتار ویسکو-پلاستیک سیال.. 21
4-2-3 رفتار ضخیم برشی یا دیلاتانت... 24
4-3 رفتار وابسته زمانی سیال.. 26
4-4 رفتار ویسکو الاستیک سیال.. 26
فصل پنجم: بررسی کارهای انجام شده. 28
مقدمه 29
5-1 جریان در میکروکانال.. 29
5-2 نانوسیال.. 33
5-3 سیال و نانوسیال غیرنیوتنی... 36
5-4 نانوسیال در میکروکانال.. 44
5-5 سیال غیرنیوتنی در میکروکانال.. 46
فصل ششم: معادلات حاکم.. 50
مقدمه 51
6-1 معادلات حاکم.. 51
6-2 بررسی و گسسته سازی معادلات حاکم.. 53
6-2-1 معادله ممنتم در جهت x.. 54
6-2-2 معادله انرژی... 56
6-2-3 حل معادله فشار. 58
فصل هفتم: نتایج... 61
مقدمه 62
7-1 کانال.. 62
7-1-1 خواص رئولوژیکی نانوسیال.. 63
7-1-1 درستی آزمایی کد.. 64
7-1-2 حل مستقل از شبکه.. 65
7-1-3 نتایج... 66
7-2 میکروکانال همگرا 76
7-2-1 حل مستقل از شبکه.. 76
7-2-2 نتایج... 77
7-2 میکروکانال.. 90
7-2-1 حل مستقل از شبکه.. 91
7-2-2 نتایج... 92
فصل هشتم: نتیجهگیری و پیشنهادات... 109
مراجع 111
منبع:
J. C. Maxwell, “Treatise on Electricity and Magnetism”, 2th edition Clarendon Press, Oxford, UK, 1881.
M.Tamari, and K. Nishikawa, “The stirring effect of bubbles upon the heat transfer to liquids”, Japan Research of Heat transfer, Vol. 5, pp.31-39. 1976.
H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles)”, Netsu Bussei (Japan), Vol. 4, No.4, pp. 227-33, 1993.
S. U. S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, D. A. Siginer, and H. P. Wang, eds., The American Society of Mechanical Engineers, New York, FED-Vol. 231 / MD-Vol.66, pp. 99-105, 1995.
A. Ramiar, “Flow and heat transfer simulation of nanofluids in microchannel”, PhD Thesis, Babol University of Technology, June 2011.
Y. Xuan, W. Roetzel, “Conceptions for heat transfer correlation of nanofluids”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701–3707, 2000.
R. L. Hamilton, and K. Crosser, “Thermal Conductivity of Heterogeneous Two- Component Systems”, Industrial & Engineering Chemistry Fundamentals, Vol. 1, pp. 187- 191, 1962.
R. P. Chhabra, “Non-Newtonian Fluids: An Introduction, Rheology of Complex Fluids”, eds. A. P. Deshpande, J. Murali Krishnan, and P. B. Sunil Kumar, Springer, Munich, Chapter 1, 2010.
M.M. Cross, “Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems” Journal of Colloid Science, Vol. 20, pp. 417-437, 1965.
H.A. Barnes, “The yield stress- a review or panta rei everything flows”, J Non-Newt Fluid Mech, Vol. 81, pp. 133-178, 1999.
R. B. Bird, G. C. Dai, B. J. Yarusso, “The rheology and flow of viscoplastic materials” Rev Chem Eng 1: 1-83. 1983.
P. H. T. Uhlherr, J. Guo, X. M. Zhang, J. Z. Q. Zhou, C. Tiu, “The shear-induced solid-liquid transition in yield stress materials with chemically different structures” J Non-Newt Fluid Mech 125:101-119, 2005.
J.F. Steffe, “Rheological methods in food process engineering” Freeman, East Lansing, MI, 1996.
Rhie, C. M. and Chow, W. L. (), “Numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA J., Vol. 21, pp. 1525–1532, 1983.
D. M. Tuckerman and R. F. W. Pease, “High performance heat sinking for VLSI”, IEEE Electron Device Letters, Vol. 2, No. 5, pp. 126–129, 1981.
C. P. Tso, S. P. Mahulikar, “The use of the Brinkman number for single phase forced convective heat transfer in microchannels”, International Journal of Heat and Mass Transfer, Vol. 41, No. 12, pp. 1759–1769, 1998.
C. P. Tso and S. P. Mahulikar, “Experimental verification of the role of Brinkman number in microchannels using local parameters”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 1837–1849, 2000.
J. Koo, C. Kleinstreuer, “Viscous dissipation effects in microtubes and microchannels”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 3159–3169, 2004.
J. Koo, Computational Nanofluid Flow and Heat Transfer Analyses Applied to Micro-systems, PhD thesis, North Carolina State University, 2005.
G. L. Morini and M. Spiga, “The Role of the Viscous Dissipation in Heated Microchannels”, Journal of Heat Transfer, Vol. 129, pp. 308-318, 2007.
Y. M. Hung, “Viscous Dissipation Effect on Entropy Generation for Non-Newtonian Fluids in Microchannels”, International Communications in Heat and Mass Transfer, Vol. 35, pp. 1125–1129, 2008.
Y. M. Hung, “A Comparative Study of Viscous Dissipation Effect on Entropy Generation in Single-phase Liquid Flow in Microchannels”, International Journal of Thermal Science, vol. 48, pp. 1026–1035, 2009.
B. Cetin, A. G. Yazicioglu and S. Kakac, “Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation – An extended Graetz problem”, International Journal of Thermal Sciences, Vol. 48, pp. 1673–1678, 2009.
O. Mokrani, B. Bourouga, C. Castelain and H. Peerhossaini, “Fluid flow and convective heat transfer in flat microchannels”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 1337–1352, 2009.
J. Koo and C. Kleinstreuer, “Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects”, Journal of Micromechanics and Microengineering, Vol. 13, pp. 568–579, 2003.
C. Kleinstreuer, Two-phase Flow—Theory and Applications, New York: Taylor and Francis, 2003.
G. L. Morini, “Single-phase convective heat transfer in micro-channels: overview of experimental results”, International Journal of Thermal Science, Vol. 43, pp. 631–651, 2004.
T. Harirchian, S.V. Garimella, “Flow regime-based modeling of heat transfer and pressure drop in microchannel flow boiling”, International Journal of Heat and Mass Transfer, Vol. 55, pp. 1246-1260, 2012.
A. Rezania, L.A. Rosendahl, “Thermal effect of a thermoelectric generator on parallel microchannel heat sink”, Energy, Vol. 37, pp. 220-227, 2012.
A. Sur, D. Liu, “Adiabatic air-water two-phase flow in circular microchannels”, International Journal of Thermal Sciences, Vol. 53, pp. 18-34, 2012.
Y. Xuan, W. Roetzel, “Conceptions for heat transfer correlation of nanofluids”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701–7, 2000.
Y. Xuan and Q. Li, “Heat Transfer Enhancement of Nanofluids”, International Journal of Heat and Fluid Flow, Vol. 21, pp. 58-64, 2000.
Y. Xuan and Q. Li, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, Transactions of the ASME, Journal of Heat Transfer, Vol. 125, pp. 151-155, 2003.
C. T. Nguyen, G. Roy, S. E. B. Maiga, P. R. Lajoie, “Heat transfer enhancement by using nanofluids for cooling of high output microprocessor”, 2004. http://www.electronics-cooling.com/html/2004_nov_techbrief.html
D. Wen, Y. and Ding, “Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels”, Microfluid Nanofluid, Vol. 1, pp. 183–189, 2005.
Y. Ding, H. Chen, Y. He, A. Lapkin, M. Yeganeh, L. Silver and Y. V. Butenko, “Forced convective heat transfer of nanofluids”, Advanced Powder Technol., Vol. 18, No. 6, pp. 813–824, 2007.
S. Z. Heris, M. N. Esfahany, and G. Etemad, “Numerical investigation of nanofluid laminar convective heat transfer through a circular tube”, Numerical Heat Transfer: Part A, Vol. 52, pp. 1043–1058, 2007.
S. Mirmasoumi and A. Behzadmehr, “Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model”, Applied Thermal Engineering, Vol. 28, pp. 717–727, 2008.
R. S. Vajjha, D. K. Das and P. K. Namburu, “Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator”, International Journal of Heat and Fluid Flow, Vol. 31, pp. 613–621, 2010.
S. Z. Heris, S. H. Noie, E. Talaii and J. Sargolzaei, “Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts”, Nanoscale Research Letters, Vol. 6, pp.179, 2011.
M. Akbari, N. Galanis and A. Behzadmehr, “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer”, International Journal of Thermal Sciences, Vol. 50, No. 8, pp. 1343-1354, 2011.
V. Bianco, S. Nardini and O. Manca, “Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes”, Nanoscale Research Letters, Vol. 6, Article No. 252, 2011.
Faulkner, D.R. Rector, J. Davidson, R. Shekarriz, “Enhanced Heat Transfer through the Use of Nanofluids in Forced Convection”, Proceedings of IMECE, Springer, Berlin, 2004.
Ding, H. Alias, D. Wen, R.A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)”, International Journal of Heat and Mass Transfer, Vol. 49, pp. 240-250, 2006.
Garg, J.L. Alvarado, C.h. Marsh, T.A. Carlos, D.A. Kessler, K. Annamalai, “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, International Journal of Heat and Mass Transfer, Vol. 52, pp.5090–5101, 2009.
A. K. Santra, S. Sen, N. Chakraborty, “Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid”, International Journal of Thermal Sciences, Vol. 47, pp. 1113–1122, 2008.
A. K. Santra, S. Sen, N. Chakraborty, “Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates”, International Journal of Thermal Sciences, Vol. 48, pp. 391–400, 2009.
R. Kamali, A.R. Binesh, “Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids”, International Communications in Heat and Mass Transfer, Vol. 37, pp. 1153–1157, 2010.
M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, “Laminar convective heat transfer of non- Newtonian nanofluids with constant wall temperature”, Heat Mass Transfer, Vol. 10, pp. 710-717, 2010.
Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, “Convective heat transfer of non- Newtonian nanofluids through a uniformly heated circular tube”, International Journal of Thermal Sciences, Vol. 50, pp. 525-531, 2011.
M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, “Turbulent forced convection heat transfer of non-Newtonian nanofluids”, Experimental Thermal and Fluid Science, Vol. 35, pp. 1351-1356, 2011.
M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, “Rheological characteristics of non- Newtonian nanofluids: Experimental investigation”, International Communications in Heat and Mass Transfer, Vol. 38, pp. 144-148, 2011.
M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, “Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 1017-1023, 2011.
S. Soltani, S. Gh. Etemad, J. Thibault, “Pool boiling heat transfer of non-Newtonian nanofluids”, International Communications in Heat and Mass Transfer, Vol. 37, pp. 29–33, 2010.
M.R. Khadangi, S .Gh. Etemad, R. Bagheri, “Free convection heat transfer of non Newtonian nanofluids under constant heat flux condition”, International Communications in Heat and Mass Transfer, Vol. 38, p.p 1449–1454, 2011.
S. P. Jang and S. U. S. choi, “Cooling performance of a microchannel heat sink with nanofluids, applied thermal engineering”, Vol. 26, pp. 2457-2463, 2006.
J. Koo and C. Kleinstreuer, “Laminar Nanofluid Flow in Microheat-Sinks”, International Journal of Heat and Mass Transfer, Vol. 48, pp. 2652-2661, 2005.
R. Chein and G. Huang, “Analysis of microchannel heat sink performance using nanofluids”, Applied Thermal Engineering, Vol. 25 , pp. 3104–3114, 2005.
T. H. Tsai and R. Chein, “Performance analysis of nanofluid-cooled microchannel heat sinks”, International Journal of Heat and Fluid Flow, Vol. 28, pp. 1013–1026, 2007.
M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, “Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel”, International Journal of Heat and Fluid Flow, Vol. 32, No. 1, pp. 107-116, 2011.
A. Raisi, B. Ghasemi, S. M. Aminossadati, “A Numerical Study on the Forced Convection of Laminar Nanofluid in a Microchannel with Both Slip and No-Slip Conditions”, Numerical Heat Transfer, Part A: Applications, Vol. 59, No. 2, pp. 114 – 129, 2011.
H. Aminfar and R. Maroofiazar , “A numerical study of the hydro-thermal behaviour of nanofluids in rectangular microchannels using a mixture model, Part C: Journal of Mechanical Engineers”, Proceedings of the Institution of Mechanical Engineering Science, Proc. IMechE Vol. 225 Part C: Journal of Mechanical Engineering Science, pp. 791-798, 2011.
D. Lelea, “The performance evaluation of Al2O3/water nanofluid flow and heat transfer in microchannel heat sink”, International Journal of Heat and Mass Transfer, Vol. 54, No. 17-18, pp. 3891-3899, 2011.
T. C. Hung, W.M. Yan, X.D. Wang, C.Y. Chang, “Heat transfer enhancement in microchannel heat sinks using nanofluids”, International Journal of Heat and Mass Transfer, Vol. 55, pp. 2559–2570, 2012.
M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darhuber, J. Harting, “Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink”, Applied Thermal Engineering, Vol. 36, pp. 260-268, 2012.
E. Mat Tokit, H.A. Mohammed, M.Z. Yusoff, “Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids”, International Communications in Heat and Mass Transfer, Vol. 39, pp. 1595–1604, 2012.
M. Barkhordari and S.Gh. Etemad, “Numerical study of slip flow heat transfer of non-Newtonian fluids in circular microchannels”, International Journal of Heat and Fluid Flow, Vol. 28, pp. 1027–1033, 2007.
C. F. Kung, C. F. Chiu, C. F. Chen, C. C. Chang, C. C. Chu, “Blood flow driven by surface tension in a microchannel”, Microfluid Nanofluid, Vol. 6, pp. 693-697, 2008.
Y.-M. Hung, “Viscous dissipation effect on entropy generation for non-Newtonian fluids in microchannels”, International Communications in Heat and Mass Transfer, Vol. 35, pp. 1125–1129, 2008.
Y.S. Muzychka, J. Edge, “Laminar Non-Newtonian Fluid Flow in Noncircular Ducts and Microchannels”, Journal of Fluids Engineering, Vol. 130, 2008.
J. Lee, P. E. Gharagozloo, B. Kolade, J. K. Eaton, K.E. Goodson, “Nanofluid Convection in Microtubes”, Journal of Heat Transfer, Vol. 132, 2010.
N. Vasu, S. De, “Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel”, International Journal of Engineering Science, Vol. 48, pp. 1641–1658, 2010.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980.
W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, Handbook of heat transfer. McGrawhill, New York, 1998.
E. Abu-Nada, “Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step”, International Journal of Heat and Fluid Flow 29, 242–249, 2008.