فهرست:
صفحه
فصل اول: مقدمه ....................................................................................................... 1
1-1- مقدمه. 3
1-2- هدف... 4
1-3- مفاهیم اصلی.. 5
1-3-1- رگهای خونی.. 5
1-3-2- قلب... 8
1-3-3- سیستم گردش خون.. 10
1-3-4- دوره قلبی.. 11
1-3-5- خون.. 13
1-3-6- جریان خون در آئورت... 16
1-3-7- سیتیآنژیوگرافی.. 16
1-3-8- کتتر. 18
1-3-9- سیستمهای میکروالکترومکانیکی.. 19
1-3-10- انواع میکروسنسورهای اندازهگیری جریان.. 21
فصل دوم: مروری بر تحقیقات گذشته ....................................................................26
2-1- مطالعات انجام شده در رابطه با میکروسنسورهای اندازهگیری جریان.. 2
2-2- مطالعات انجام شده در رابطه با جریان خون در بدن.. 34
فصل سوم: معادلات حاکم بر مساله ....................................................................... 39
3-1- جریان الکتریکی.. 41
3-2- سیال.. 42
3-3- جامد. 44
فصل چهارم: طراحی و بهینه سازیساختار میکروهیتر و تولید هندسه .............. 45
4-1- طراحی و بهینهسازی ساختار میکروهیتر. 47
4-2- تولید هندسهی مربوط به میکروسنسور، جهت ورود به آئورت... 59
4-3- مراحل ساخت هندسهی واقعی آئورت انسان.. 62
4-4- نحوه ورود کتتر به شریان آئورت... 67
فصل پنجم: حل جریان در هندسهی ساده ............................................................ 69
فصل ششم: تحلیل نتایج ........................................................................................ 77
6-1- شرایط مرزی.. 79
2-6- مشخصات سیال.. 92
6-3- مطالعات شبکه. 93
6-4- بررسی رژیم جریان در آئورت... 103
6-5- سختافزار مورد استفاده 103
6-6- شرایط اولیه. 103
6-7- مقایسهی نتایج با نتایج حاصل از نرم افزار فلوئنت... 104
6-8- محاسبهی اختلاف پتانسیل لازم برای اعمال در دو سر میکروهیتر. 106
6-9- تحلیل و مقایسه نتایج دردوحالت وجود و یا عدم وجود میکروسنسور درآئورت106
فصل هفتم: نتیجهگیری و پیشنهادات .................................................................. 17-1- نتیجهگیری.. 145
7-2- پیشنهادات... 147
فهرست منابع ......................................................................................................... 149
منبع:
1. Lee, C.Y., S.J. Lee, and G.W. Wu. Fabrication of micro temperature sensor on the flexible substrate. in 7th IEEE Conference. 2007. IEEE.
2. Lee, W., Biofluid Mechanics in Cardiovascular Systems. 2006: United States of America: McGraw-Hill Companies, Inc.
3. Cedars-Sinal. Aortic Disease; Available from: http://www.cedars-sinai.edu/Patients/Programs-and-Services/Heart-Institute/Conditions/Aortic-Disease.aspx.
4. Congenital Heart Abnormalities and Abnormalities of the Arch of the Aorta. Programs and Clinics 2011; Available from: https://www.chw.org/display/PPF/DocID/48516/Nav/1/router.asp.
5. Srivastava, D., Making or Breaking the Heart: From Lineage Determination to Morphogenesis. Cell, 2006. 126(6): p. 1037-1048.
6. Chandran, K.B., A.P. Yoganathan, and S.E. Rittgers, Biofluid mechanics: the human circulation. 2012: CRC Press.
7. Guyton, A.C. and J.E. Hall, Textbook of medical physiology. Elsevier Saunders. Philadelphia, PA, 2006: p. 764-5.
8. Banerjee, R.K., Y.I. Cho, and K. Kensey, Effect of the non-Newtonian viscosity of blood on steady and pulsatile flow in stenosed arteries. Advances in bioengineering, 1991. 20: p. 103-106.
9. Johnston, B.M., et al., Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of Biomechanics, 2004. 37(5): p. 709-720.
10. Cho, Y.I. and K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 1991. 28(3-4): p. 241-262
11. Fung, Y.-c., Biomechanics: circulation. 1997: Springer.
12. Morris, L., et al., A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). Journal of biomechanics, 2004. 37(7): p. 1087-1095.
13. Nerem, R., W. Seed, and N. Wood, An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech, 1972. 52(part 1): p. 137-160.
14. Lyshevski, S.E., MEMS and NEMS: systems, devices, and structures. 2002: CRC Press.
15. Kuo, J.T.W., L. Yu, and E. Meng, Micromachined Thermal Flow Sensors—A Review. Micromachines, 2012. 3(3): p. 550-573.
16. Nguyen, N.T., Micromachined flow sensors--a review. Flow measurement and Instrumentation, 1997. 8(1): p. 7-16
17. Chiu, N., T. Hsiao, and C. Lin, Low power consumption design of micro-machined thermal sensor for portable spirometer. Tamkang Journal of Science and Engineering, 2005. 8(3): p. 225.
18. Cole, J., Heat transfer from wires at Reynolds numbers in the Oseen range. 1954: Heat Transfer & Fluid Mechanics Inst, University of California.
19. Van Putten, A.F.P. and S. Middelhoek, Integrated silicon anemometer. Electronics Letters, 1974. 10(21): p. 425-426
20. Petersen, K., J. Brown, and W. Renken. High-precision, high-performance mass-flow sensor with integrated laminar flow micro-channels. 1985.
21. Nguyen, N. and W. Dötzel, Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors. Sensors and Actuators A: Physical, 1997. 62(1): p. 506-512.
22. Wu, S., et al., MEMS flow sensors for nano-fluidic applications. Sensors and Actuators A: Physical, 2001. 89(1): p. 152-158.
23. Meng, E., P.-Y. Li, and Y.-C. Tai, A biocompatible Parylene thermal flow sensing array. Sensors and Actuators A: Physical, 2008. 144(1): p. 18-28.
24. Li, C., et al., A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomedical Microdevices, 2008. 10(5): p. 671-679.
25. Liu, P., R. Zhu, and R. Que, A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors, 2009. 9(12): p. 9533-9543.
26. Ahrens, R. and M. Festa, Dynamical flow measurements in hydraulic systems using a polymer-based micro flow sensor. Procedia Chemistry, 2009. 1(1): p. 927-930.
27. Selvakumar, V. and L. Sujatha, Design and Analysis of Micro-Heaters for Temperature Optimisation Using COMSOL Multiphysics for MEMS Based Gas Sensor, in Comsol Conference. 2012: Bangalore.
28. Taylor, C.A., T.J. Hughes, and C.K. Zarins, Finite element modeling of blood flow in arteries. Computer methods in applied mechanics and engineering, 1998. 158(1): p. 155-196.
29. Alishahi, M., M.M. Alishahi, and H. Emdad, Numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Scientia Iranica, 2011. 18(6): p. 1297-1305.
30. Vasava, P., et al., Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension. Computational and mathematical methods in medicine, 2012. 2012.
31. Ozawa, E.T., A numerical model of the cardiovascular system for clinical assessment of the hemodynamic state. 1996, Massachusetts Institute of Technology.
32. Olufsen, M.S., et al., Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of biomedical engineering, 2000. 28(11): p. 1281-1299.
33. Azer, K. and C.S. Peskin, A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile. Cardiovascular Engineering, 2007. 7(2): p. 51-73.
34. Liang, F., et al., Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Medical & biological engineering & computing, 2009. 47(7): p. 743-755.
35. Caro, C., J. Fitz-Gerald, and R. Schroter, Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1971. 177(1046): p. 109-133.
36. Friedman, M.H., et al., Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis, 1981. 39(3): p. 425-436.
37. Ku, D.N., et al., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, thrombosis, and vascular biology, 1985. 5(3): p. 293-302.
38. Karino, T., Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases. International angiology: a journal of the International Union of Angiology, 1986. 5(4): p. 297.
39. ANSYS, I., Transient Simulations Introduction to CFX 2009. Chapter 8.
40. Torii, R., et al., A computational study on the influence of catheter-delivered intravascular probes on blood flow in a coronary artery model. Journal of biomechanics, 2007. 40(11): p. 2501-2509.
41. Santamarina, A., et al., Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 1998. 26(6): p. 944-954.
42. Taylor, C.A., T.J. Hughes, and C.K. Zarins, Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Annals of Biomedical Engineering, 1998. 26(6): p. 975-987.
43. Chen, D., et al., A longitudinal study of Type-B aortic dissection and endovascular repair scenarios: Computational analyses. Medical engineering & physics, 2013.
44. Sinnott, M., P.W. Cleary, and M. PRAKASH. An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method. in Proc. Fifth International Conference on CFD in the Process Industries. 2006.
45. Banerjee, R., et al., Catheter obstruction effect on pulsatile flow rate--pressure drop during coronary angioplasty. Journal of biomechanical engineering, 1999. 121(3): p. 281-289.
46. Morbiducci, U., et al., Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. Journal of biomechanics, 2012.
47. Vignon-Clementel, I.E., et al., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer methods in applied mechanics and engineering, 2006. 195(29): p. 3776-3796.
48. Nahirnyak, V.M., S.W. Yoon, and C.K. Holland, Acousto-mechanical and thermal properties of clotted blood. The Journal of the Acoustical Society of America, 2006. 119: p. 3766.
49. Tai, C.H., Parallel-multigrid computation of prosthetic heart valves under physiological conditions using an immersed object method with overlapping grids. 2011.
50. Chang, L.-J. and J. Tarbell, A numerical study of flow in curved tubes simulating coronary arteries. Journal of biomechanics, 1988. 21(11): p. 927-937.
51. Brida, S., et al. Low Power Silicon Microheaters for Gas Sensors. in Sensors and Microsystems: Proceedings of the 4th Italian Conference: Roma, Italy, 3-5 February 1999. 2000. World Scientific.