فهرست:
1- فصل اول: مقدمه. 2
1-1- اهمیت موضوع. 2
1-2- هدف از انجام این پایاننامه و مراحل انجام آن.. 5
2- فصل دوم: مروری بر مطالعات پیشین.. 8
2-1- مقدمه. 8
2-2-تاریخچه ارتعاشات تیرها 8
2-3-تاریخچه تحلیل معکوس.... 9
2-3-1-شناسایی معکوس بارهای ضربهای.. 10
2-3-2-شناسایی معکوس ثابتهای مواد. 11
2-3-3-مسائل شناسایی ترک و عیوب... 11
2-4-تاریخچه کاربرد فنرها و دمپرها 12
3- فصل سوم: مبانی تئوری.. 17
3-1- مقدمه. 17
3-2-روند کلی حل یک مسأله معکوس.... 18
3-2-1-تعریف مسأله. 20
3-2-2-ارائه مدل مستقیم.. 20
3-2-3-محاسبه حساسیت بین خروجیها و پارامترها 20
3-2-4-طراحی آزمایش.... 21
3-2-5-کمینه کردن خطای اندازهگیری.. 21
3-2-6-بکارگیری فرمولبندی معکوس.... 21
3-2-7-بازبینی پاسخ.. 22
3-3-مفاهیم اساسی مسائل معکوس.... 22
3-4-فرمولبندی معکوس.... 28
3-5-انتخاب خروجیها 30
3-6-هموارسازی برای مسائل بدنهاده 31
3-7- روشهای بهینهسازی.. 33
3-7-1- روشهای جستجوی مستقیم.. 36
3-7-2- روشهای جستجو بر پایه گرادیان.. 37
3-7-3-روش غیرخطی حداقل مربعات... 37
3-7-4-روشهای پیدا کردن ریشه. 38
3-7-5-الگوریتمهای ژنتیک.... 38
3-7-6-نکاتی در خصوص روشهای بهینهسازی.. 39
4- فصل چهارم: نحوه انجام تحقیق.. Error! Bookmark not defined.
4-1-مقدمه. Error! Bookmark not defined.
4-2-تشریح مدل پیشنهادی.. Error! Bookmark not defined.
4-3- فرمولبندی تحلیل معکوس.... Error! Bookmark not defined.
4-3-1-محاسبه ماتریس حساسیت... Error! Bookmark not defined.
4-3-2-شبیهسازی دادههای اندازهگیری.. Error! Bookmark not defined.
4-3-3-انجام محاسبات در نرم افزار Error! Bookmark not defined.
4-5- بررسی تأثیر پارامترهای مختلف بر پاسخ زمانمند تیرطرهای.. Error! Bookmark not defined.
4-5-1-بررسی تأثیر بازه اعمال نیرو بر پاسخ تیر طرهای.. Error! Bookmark not defined.
4-5-2-بررسی تأثیر ضریب سفتی بر پاسخ تیر طرهای.. Error! Bookmark not defined.
4-5-3-بررسی تأثیر ضریب میرایی بر پاسخ تیر طرهای.. Error! Bookmark not defined.
5- فصل پنجم: مثالهای عددی.. Error! Bookmark not defined.
5-1-مقدمه. Error! Bookmark not defined.
5-2-بررسی تیر یک سر درگیر (تیر طرهای) Error! Bookmark not defined.
5-2-1-بررسی تأثیر خطای اندازهگیری بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-2-بررسی روند همگرایی پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-3-بررسی تأثیر محل قرارگیری حسگر بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-4-بررسی تأثیر تعداد دادههای اندازهگیری بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-5-بررسی تأثیر تعداد حسگر بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-6-بررسی تأثیر مقدار حدس اولیه بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-7-بررسی تأثیر زمان اعمال نیرو بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-8-بررسی تأثیر اختلاف زمانی بر پاسخ تیر طرهای.. Error! Bookmark not defined.
5-2-9-بررسی تأثیر زمان دادهبرداری بر پاسخ معکوس در تیر طرهای بدون در نظر گرفتن اختلاف زمانی Error! Bookmark not defined.
5-2-10-بررسی تأثیر زمان دادهبرداری بر پاسخ معکوس در تیر طرهای با در نظر گرفتن اختلاف زمانی Error! Bookmark not defined.
5-2-11-بررسی تأثیر محل اعمال نیرو بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-12-بررسی تأثیر مقدار ضریب میرایی بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-2-13-بررسی تأثیر مقدار ضریب سفتی بر پاسخ معکوس در تیر طرهای.. Error! Bookmark not defined.
5-3-بررسی تیر دو سر درگیر. Error! Bookmark not defined.
5-3-1-بررسی تأثیر خطای اندازهگیری بر پاسخ معکوس در تیر دو سر درگیر. Error! Bookmark not defined.
5-3-2-بررسی تأثیر تعداد دادههای اندازهگیری بر پاسخ معکوس در تیر دو سر درگیر. Error! Bookmark not defined.
5-3-3-بررسی تأثیر تعداد حسگرها بر پاسخ معکوس در تیر دو سر درگیر. Error! Bookmark not defined.
6- فصل ششم: نتیجه گیری و پیشنهادات... Error! Bookmark not defined.
6-1-مقدمه. Error! Bookmark not defined.
6-2-نتیجهگیری.. Error! Bookmark not defined.
6-3-پیشنهادات... Error! Bookmark not defined.
مراجع و منابع.. 42
منبع:
[1]. Arora, S.S., Nigam, S.P., and Naveen Kwatra, Study of vibration characteristics of cantilever beams of different materials, Mechanical Engineering Department Thapar University Patiala- 147004, India. 2012.
[2]. Rezaee, M., and Hassannejad, R., Damped free vibration analysis of a beam with a fatigue crack using energy balance methods, International Journal of the Physical Sciences, vol. 5(6), pp. 793-803, 2010.
[3]. Ke, L.L., Yang, J., Kitipornchai, S., and Xiang, Y., Flexural Vibration and Elastic Buckling of a cracked Timoshenko beam made of functionally graded materials, Journal of advanced materials and structure, vol. 16, pp. 488-502, 2009.
[4]. Frisswell, M.I., and Mottershead, J.E., FRF and finite element equations with Rigid body constraints and their applications in model updating. IMAC XVII - 17th International Modal Analysis Conference, pp. 654- 659, 1999.
[5]. Li, W.L., Free vibration of beams with general boundary conditions, United technology carrier Corporation USA, 2012.
[6]. Nie, J., and Wei, X., On the use of material-dependent damping in ANSYS for made superposition of transient analysis, ASME pressure vessels and piping division, vol. 8, pp. 239-244 2011.
[7]. Prasad, D.R., and Seshu, D.R., A study on dynamic characteristics of structural materials using modal analysis, Asian Journal of Civil Engineering, vol. 9(2), pp. 141-152, 2008.
[8]. Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven: Yale University Press, 1923.
[9]. Achenbach, J.D., Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.
[10]. Liu, G.R., and Han, X., Computational Inverse Techniques in Nondestructive Evaluation, CRC Press, Boca Raton, FL, 2003.
[11]. Goodier, J.N., Jahsman, W.E., and Riperger, E.A., An Experimental Surface Wave Method for Recording Force-Time Curves in Elastic Impacts, Journal of Applied Mechanics, vol. 26(3), pp. 3-7, 1959.
[12]. Doyle, J.F., An Experimental Method for Determining the Dynamic Contact Law, Experimental Mechanics, vol. 24(1), pp. 10-16, 1984.
[13]. Doyle, J. F., Further Development in Determining the Dynamic Contact Law, Experimental Mechanics, vol. 24(4), pp. 265-270, 1984.
[14]. Doyle, J. F., Determining the Contact Force During the Transverse Impact of Plates, Experimental Mechanics, vol. 27(1), pp. 68-72, 1987.
[15]. Hollandsworth, P.E., and Busby, H.R., Impact Force Identification Using the General Inverse Technique, International Journal of Impact Engineering, vol. 8(4), pp. 315-322, 1989.
[16]. Inoue, H., Ikeda, N., Kishimoto, K., Shibuya, T., and Koizumi, T., Inverse Analysis of the Magnitude and Direction of Impact Force, JSME international journal, Ser. A, Mechanics and material engineering, vol. 38(1), pp. 84- 91, 1995.
[17]. زارع، محمودرضا.، و همتیان، محمدرحیم.، و خواجه پور، سالار.، تخمین بارهای آیرودینامیکی وارد شونده به سازههای هوایی به وسیله اندازهگیری کرنش، در مجموعه مقالات نخستین همایش تخصصی سازههای هوایی و سیستمهای جدایش، سازمان صنایع هوا فضا، 1386.
[18]. همتیان، محمدرحیم.، زارع، محمودرضا.، و خواجه پور، سالار.، محاسبه معکوس بارهای اعمالی به ورقهای کامپوزیتی با رفتار غیر خطی، در مجموعه مقالات پانزدهمین کنفرانس سالانه (بین المللی) مهندسی مکانیک، ایران، تهران، دانشگاه صنعتی امیرکبیر، 1386.
[19]. Kazemi, M., and Hematiyan, M.R., An Efficient Inverse Method for Identification of the Location and Time History of an Elastic Impact Load, Journal of Testing and Evaluation, vol. 37(6), 2009.
[20]. Mignogna, R.B., Ultrasonic determination of elastic constants from oblique angles of incidence in non-symmetry planes, in Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti, D.E., Eds., Plenum Press, New York, 1565, 1990.
[21]. Mignogna, R.B., Batra, N.K., and Simmonds, K.E., Determination of elastic constants of anisotropic materials from oblique angle ultrasonic measurements. I: analysis II: experimental, in Review of Progress in Quantitative Nondestructive Evaluation, Thompson, D.O. and Chimenti, D.E., Eds., Plenum Press, New York, 1669, 1991.
[22]. Soares, C.M.M., Defreitas, M.M., Araujo, A.L., and Pedersen, P., Identification of material properties of composite plates specimens, Composite Structures, vol. 25(1-4), pp. 277-285, 1993.
[23]. Wang, W.T., Kam, T.Y., Material characterization of laminated composite plates via static testing, Composite Structures, vol. 50(4), pp. 347–352, 2000.
[24]. Lecompte, D., Smits, A., Sol, H.; Vantomme, J., and Van Hemelrijck, D., Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens, International Journal of Solids and Structures, vol. 44(5), pp. 1643–1656, 2007.
[25]. Cunha, J., and Piranda, J., Identification of stiffness properties of composite tubes from dynamic tests, Experimental Mechanics, vol. 40(2), pp. 211–218, 2000.
[26]. Rikards, R., Chate, A., and Gailis, G., Identification of elastic properties of laminates based on experiment design, International Journal of Solids and Structures, vol. 38(30-31), pp. 5097–5115, 2001.
[27]. Ohkami, T., Ichikawa, Y., and Kawamoto, T., A boundary element method for identifying orthotropic material parameters, International Journal for Numerical and Analytical Methods in Geo-mechanics, vol. 15(9), pp. 609–625, 1991.
[28]. Huang, L.X., Sun, X.S., Liu, Y.H., and Cen, Z.Z., Parameter identification for two-dimensional orthotropic material bodies by the boundary element method, Engineering Analysis with Boundary Elements, vol. 28(2), pp. 109–121, 2004.
[29]. Comino, L., and Gallego, R., Material constants identification in anisotropic materials using boundary element techniques, Inverse Problems in Science and Engineering, vol. 13(6), pp. 635–654, 2005.
[30]. Hematiyan, M.R., Khosravifard, A., Shiah, Y.C., and Tan, C.L., Identification of Material Parameters of Two-Dimensional Anisotropic Bodies Using an Inverse Multi-Loading Boundary Element Technique, Computer Modeling in Engineering and Sciences (CMES), vol.87(1), pp.55-76, 2012.
[31]. Liu, G.R., and Lam, K.Y., Characterization of a horizontal cracks in anisotropic laminated plates, International Journal of Solids and Structures, vol. 31(21), pp. 2965-2977, 1994.
[32]. Lam, K.Y., Liu, G.R., and Wang, Y.Y., Characterization of a vertical surface-breaking crack plate, Computational Acoustics, vol. 3(4), pp. 297-310, 1995.
[33]. Law, S.S., and Lu, Z.R., Crack identification in beam from dynamic responses, Journal of Sound and Vibration, vol. 285(4-5), pp. 967–987, 2005.
[34]. Lele, S.P., and Maiti, S.K., Modeling of transverse vibrations for crack detection and measurement of crack extension, Journal of Sound and Vibration, vol. 257(3), pp. 559–583, 2002.
[35]. Liu, G.R., and Chen, S.C., A novel formulation of inverse identification of stiffness distribution in structures, in The 1st International Conference on Structural Stability and Dynamics, Yang, Y.B., Leu, L.J., and Hsieh, S.H., Eds., Taipei, Taiwan, 531, 2000.
[36]. Liu, G.R., and Chen, S.C., Flaw detection in sandwich plates based on time-harmonic response using genetic algorithm, Computer Methods in Applied Mechanics and Engineering, vol. 190(42), pp. 5505-5514, 2001.
[37]. Liu, G.R., and Chen, S.C., A novel technique for inverse identification of distributed stiffness factor in structures, Journal of Sound and Vibration, vol. 254(5), pp. 823-835, 2002.
[38]. Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J., A vibration technique for non-destructive assessing the integrity of structures, Journal of Mechanical Engineering Science, vol. 20(2), pp. 93-100, 1978.
[39]. Ju, F.D., Akgun, M., Paez, T.L. and Wong, E.T., Diagnosis of fracture damage in simple structures, Bureau of Engineering Research Report No, CE-62(82) AFOSR-993-1 University of New Mexico, Alburquerque, NM., 1982.
[40]. Haisty, B.S. and Springer, W.T., A general beam element for use in damage assessment of complex structures, Journal of vibrations, Acoustic, Stress and Reliability in Design 110, pp. 389-394, 1984.
[41]. Narkis, Y., Identification of Crack Location in Vibrating Simply Supported Beams, Journal of Sound and Vibration, vol. 172 (4), pp. 549-558, 1994.
[42]. Lee, H.P. and Ng, T.Y., Natural frequencies and modes for the flexural vibration of a cracked beam, Applied Acoustics, vol. 42, pp. 151-163, 1994.
[43]. Bamnios, G. and Trochides, A., Dynamic Behavior of a cracked cantilever beam, Applied Acoustic, vol. 45 (2), pp. 97-112, 1995.
[44]. Boltezar, M., Strancar, B. and Kuhelj, A., Identification of transverse crack location in flexural vibrations of free-free beams, Journal of Sound and Vibration, vol. 211(5), pp. 729-734, 1998.
[45]. Loyaa, J.A., Rubiob, L. and Fernandez-Saez, J., Natural frequencies for bending vibrations of Timoshenko cracked beams, Journal of Sound and Vibration, vol. 290(3-5), pp. 640-653, 2006.
[46]. Silva, T.A.N., Maia, N.M.M., Roquel, A.A. and Travassos, J.M.C., Identification of Elastic Support Properties on a Bernoulli-Euler Beam, Structural Dynamics, Vol. 3, Conference Proceedings of the Society for Experimental Mechanics Series, pp. 753-762, 2011.
[47]. DeRosa, M., Franciosi, C. and Maurizi, M., On the dynamic behaviour of slender beams with elastic ends carrying a concentrated mass, Computers & Structures, vol. 58(6), pp. 1145–1159, 1996.
[48]. Yoshimure, M., Measurement of dynamic rigidity and damping property of simplified joint models and simulation by computer, Annals CIRP, vol. 25, pp. 193-198, 1977.
[49]. Yoshimure, M., Computer design improvement of machine tool structure incorporation joint dynamics data, Annals CIRP, vol. 28, pp. 241-246, 1980.
[50]. Good, M.R. and Marioce, D.J., Using experimental modal analysis to characterize automobile body joints and improve finite element analysis, Proceedings of the Seventh International Modal Analysis Conference, Las Vegas, NV, 1, pp. 106–110, 1989.
[51]. Nobari, A.S., Robb, D.A. and Ewins, D.J., A new modal-based method for structural dynamic model updating and joint identification, Proceedings of the 10th International Modal Analysis Conference, vol. 1, pp. 741–750, 1992.
[52]. Inamura, T. and Sata, T., Stiffness and damping properties of the elements of a machine tool structure, Annals of the CIRP, vol. 28, pp. 235-239, 1979.
[53]. Yuan, J.X. and Wu, X.M., Identification of the joint structural parameters of machine tool by DDS and FEM, American Society of Mechanical Engineers, Journal of Engineering for Industry, vol. 107, pp. 64–69, 1985.
[54]. Kim, T.R., Wu, X.M. and Eman, K.F., Identification of the joint parameters for a taper joint, American Society of Mechanical Engineers, Journal of Engineering for Industry, vol. 111, pp. 282–287, 1989.
[55]. Tsai, J.S. and Chou, Y.F., The identification of dynamic characteristics of a single bolt joint, Journal of Sound and Vibration, vol. 125, pp.487–502, 1988.
[56]. Mottershead, J.E. and Stanway, R., Identification of structural vibration parameters by using a frequency domain filter, Journal of Sound and Vibration, vol. 109, pp. 495–506, 1986.
[57]. Ibrahim, R.A. and Pettit, C.L., Uncertainties and dynamic problems of bolted joints and other fasteners, Journal of Sound and Vibration, vol. 279, pp. 857–936, 2005.
[58]. Bickford, J.H., An Introduction to the Design and Behavior of Bolted Joints, 2nd Edition, Marcel Dekker Inc., New York, 1990.
[59]. Jones, S.W., Kirby, P.A. and Nethercot, D.A., The analysis of frame with semi-rigid connections-a state-of-the-art report, Journal of Construction Steel Research, vol. 3 (2), pp. 2-13, 1983.
[60]. Ito, Y. and Masuko, M., Study on the horizontal bending stiffness of a bolted joint, Bulletin of Japanese Society of Mechanical Engineering, vol. 14, pp. 889-976, 1971.
[61]. Ikegami, R., Church, S.M., Keinholz, D.A. and Fowler, B.L., Experimental characterization of deployable trusses and joints, Workshop on Structure Control and Interaction Flexible Structures, Marshall Space Flight Center, Huntsville, AL, 1986.
[62]. Crawley, E.F. and O’Donnell, K.J., Force-state mapping identification of nonlinear joints, American Institute of Aeronautics and Astronautics Journal, vol. 25, pp. 1003-1010, 1987.
[63]. Goel, R.P., Transverse vibration of tapered beams, Journal of Sound and Vibration, vol. 47(1), pp.1-7, 1976.
[64]. Goel, R.P., Free vibrations of a beam-mass system with elasticity restrained ends, Journal of Sound and Vibration, vol. 47(1), pp. 9-14, 1976.
[65]. Sato, K., Transverse vibration of linearly tapered beams with ends elasticity against rotation subjected to axial force, International Journal of Mechanical Sciences, vol. 22(2), pp. 109-115, 1980.
[66]. Abbas, B.A.H., Vibrations of Timoshenko beams with elastically restrained ends, Journal of Sound and Vibration, vol. 97(4), pp. 541-548, 1984.
[67]. Laura, P.A.A. and Gutierrez, Vibrations of an elastically restrained cantilever beam of varying cross section with tip mass of finite length, Journal of Sound and Vibration, vol. 108(1), pp. 123-131, 1986.
[68]. Filipich, C.P., Maurizi, M.J. and Rosales, M.B., Free vibrations of a spinning uniform beam with ends elastically restrained against rotation, Journal of Sound and Vibration, vol. 116(3), pp. 475-482, 1987.
[69]. Maurizi, M.J., Rossi, R.E. and Bellés, P.M., Free vibrations of uniform Timoshenko beams with ends elastically restrained against rotation and translation, Journal of Sound and Vibration, vol. 141(2), pp. 359-362, 1990.
[70]. Lee, S.Y. and Lin, S.M., Dynamic analysis of non-uniform beams with time-dependent elastic boundary conditions, Journal of Applied Mechanics, vol. 63(2), pp. 474-478, 1996.
[71]. Ho, S.H. and Chen, C.K., Analysis of general elastically end restrained non-uniform beams using differential transform, Applied Mathematical Modelling, vol. 22(4-5), pp. 219-234, 1998.
[72]. Lin, S.M., Dynamic analysis of rotating non-uniform Timoshenko beams with an elastically restrained root, Journal of Applied Mechanics, vol. 66(3), pp. 742-749, 1999.
[73]. Hirsch, C., Numerical Computation of Internal and External Flows, vol. 1, Wiley-Inter science Publications, New York, 1988.
[74]. Anderson, J.D., Computational Fluid Dynamics, the Basic with Applications, McGraw-Hill, New York, 1995.
[75]. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 5th ed., McGraw-Hill, New York, 2000.
[76]. Liu, G.R., and Quek, S.S., Finite Element Method: for Readers of All Backgrounds, Butterworth-Heinemann, Burlington, MA, 2003.
[77]. Liu, G.R., and Achenbach, J.D., A strip element method for stress analysis of anisotropic linearly elastic solids, ASME Journal of Applied Mechanics., vol. 61(2), pp. 270-277, 1994.
[78]. Liu, G.R., and Achenbach, J.D., Strip element method to analyze wave scattering by cracks in anisotropic laminated plates, ASME Journal of Applied Mechanics, vol. 62(3), pp. 607-613, 1995.
[79]. Brebbia, C.A., Telles, J.C.F., and Wrobel, L.C., Boundary Element Techniques: Theory and Application in Engineering, Springer-Verlag, New York, 1984.
[80]. Liu, G.R., Achenbach, J.D., Kim, J.O. and Li, Z.L., A combined finite element method/boundary element method for v(z) curves of anisotropic-layer/substrate configurations, Journal of the Acoustical Society of America, vol. 92(5), pp. 2734-2740, 1992.
[81]. Liu, G.R., Mesh Free Methods: Moving beyond the Finite Element Method, CRC Press, Boca Raton, FL, 2002.
[82]. Liu, G.R., and Liu, M.B., Smoothed Particle Hydrodynamics: a Mesh-free Particle Method, World Scientific Publishing Corporation, Singapore, 2003.
[83]. Gladwell, G.M.L., Inverse Problems in Vibration, Second edition, New York, Kluwer Academic Publishers, Springer, 2004.
[84]. Engl, H.W., Hanke, M. and Neubauer, A., Regularization of Inverse Problems, Netherlands, Kluwer Academic Publishers, 2000.
[85]. Santamarina, J.C. and Fratta, D., Introduction to Discrete Signals and Inverse Problems in Civil Engineering, Reston, VA, ACES Press, 1998.
[86]. Tikhonov, A.N., Goncharsky, A.V. and Yagola, A.G., Numerical Methods for the Solution of Ill-Posed Problems, Dordrecht: Kluwer Academic Publishers, 1990.
[87]. Busby, H.R. and Trujillo, D.M., Optimal Regularization of an Inverse Dynamics Problem, Computers and Structures, vol. 63, pp. 243-248, 1997.
[88]. Hansen, P.C., Analysis of Discrete Ill-Posed Problems by Means of the L-Curve, SIAM Review, vol. 34, pp. 561-580, 1992.
[89]. Tikhonov, A.N., Arsenin, V.Y., Solutions of Ill-Posed Problems, John- Wiley & Sons, New York, 1977.
[90]. Tikhonov, A.N., Arsenin, V.Y., Methods for Solving Ill-Posed Problems, Nauka, Moscow, 1986.
[91]. Law, S.S., Chan, H.T. and Zeng, Q.H., Moving Force Identification: a time domain method, Journal of Sound and Vibration, vol. 201(1), pp. 1-22, 1997.
[92]. Moller, P.W., Load identification through structural modification, Journal of Applied Mechanics, vol. 66(1), pp. 236-241, 1999.
[93]. Liu, G.R., Ma, W.B. and Han, X., An inverse procedure for identification of loads on composite laminate plates, Composites Part B: Engineering, vol. 33(6), pp. 425-432, 2002.
[94]. Liu, G.R., Ma, W.B. and Han, X., Inversion of loading time history using displacement response of composite laminates: three-dimensional cases, Acta Mechanica, vol. 157(1-4), pp. 223-234, 2002.
[95]. Rokhlin, S.I. and Wang, W., Double through-transmission bulk wave method for ultrasonic phase velocity measurement and determination of elastic constants of composite materials, The Journal of Acoustical Society of America, vol. 91(6), pp. 3303-3312, 1992.
[96]. Chu, Y.C., Degtyar, A.D. and Rokhlin, S.I., On determination of orthotropic material moduli from ultrasonic velocity data in non-symmetry planes, The Journal of Acoustical Society of America, vol. 95(6), pp. 3191-3203, 1994.
[97]. Chu, Y.C. and Rokhlin, S.I., Stability of determination of composite moduli from velocity data in planes of symmetry for weak and strong anisotropies, J The Journal of Acoustical Society of America, vol. 95(1), pp. 213-225, 1994.
[98]. Chu, Y.C. and Rokhlin, S.I., Analysis of elastic constant reconstruction from ultrasonic bulk wave velocity data, in Review of Progress in Quantitative Nondestructive Evaluation, Thomson, D.O. and Chimenti, D.E.,1994, 1165.
[99]. Liu, G.R., Han, X. and Lam, K.Y., Material characterization of FGM plates using elastic waves and an inverse procedure, Journal of Composite Materials, vol. 35(11), pp. 954-971, 2001.
[100]. Balasubramaniam, K. and Rao, N.S., Inversion of composite material elastic constants from ultrasonic bulk wave phase velocity data using genetic algorithms, Composite Part B, 29B, 171, 1998.
[101]. Liu, G.R., Han, X. and Lam, K.Y., A combined genetic algorithm and nonlinear least squares method for material characterization using elastic waves, Computer Methods in Applied Mechanics and Engineering, vol. 191(17-18), pp. 1909-1921, 2002.
[102]. Doyle, J.F., Determining the size and location of transverse cracks in beams, Experimental Mechanics, vol. 35(3), pp. 272-280, 1995.
[103]. Bicanic, N. and Chen, H.P., Damage identification in framed structures using natural frequencies, International Journal for Numerical Methods in Engineering, vol. 40(23), pp. 4451-4468, 1997.
[104]. Wu, Z.P., Liu, G.R. and Han, X., An inverse procedure for crack detection in anisotropic laminated plates using elastic waves, Engineering with Computers, vol. 18(2), pp. 116-123, 2002.
[105]. Yang, Z.L., Liu, G.R. and Lam, K.Y., An inverse procedure for crack detection using integral strain measured by optical fiber, Smart Materials and Structures, vol. 11(1), pp. 72-78, 2002.
[106]. Liu, G.R., Zhou, J.J. and Wang, J.G., Coefficients identification in electronic system cooling simulation through genetic algorithm, Computers and Structures, vol. 80(1), pp. 23-30, 2002.
[107]. Dandekar, T. and Argos, P., Potential of genetic algorithms in protein folding and protein engineering simulations, Protein Engineering, vol. 5(7), pp. 637-645, 1992.
[108]. Unger, R. and Moult, J., Genetic algorithms in protein folding simulations, Journal of Molecular Biology, vol. 231(1), pp. 75-81, 1993.
[109]. Yang, Z.L., Liu, G.R. and Lam, K.Y., Protein structure prediction using lattice model and a modified micro genetic algorithm, ICMBE, Singapore, D3VB-1230, 2002.
[110]. Yang, Z.L., Liu, G.R. and Lam, K.Y., A modified genetic algorithm with local and global search techniques, 3rd Int. Conf. Bioinformatics Genome Regul. Struct., (BGRS '2002), Novosibirsk, Russia, 2002, 190.
[111]. Xu, Y.G. and Liu, G.R., Fitting interatomic potential using molecular dynamic simulations and inter-generation projection genetic algorithm, Journal of Micromechanics and Microengineering, vol. 13(2), pp. 254-, 2003.
[112]. Fletcher, R., Practical Methods of Optimization, 2nd ed., John Wiley & Sons, New York, 1987.
[113]. Rao, S.S., Engineering Optimization, Theory and Practice, New York: Wiley Inter-science, 1996.
[114]. Fletcher, R. and Reeves, C.M., Function Minimization by Conjugate Gradients, Computer Journal, vol. 7(2), pp. 149-154, 1964.
[115]. Gallego, R., Comino, L., and Ruiz-Cabello, A., Material constant sensitivity boundary integral equation for anisotropic solids, International Journal for Numerical Methods in Engineering, vol. 66(12), pp. 1913–1933, 2006.
[116]. Rao, S.S., Mechanical Vibrations, Addison-Wesley Publishing, 1995.