پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم

word 1 MB 32466 102
1392 کارشناسی ارشد مهندسی کشاورزی و زراعت
قیمت قبل:۷۵,۰۰۰ تومان
قیمت با تخفیف: ۳۴,۸۵۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • پایان­نامه برای دریافت درجه کارشناسی ارشد در رشته بیوتکنولوژی کشاورزی

    کلید­ واژه­ها: الکتروفورز دو بعدی، تنش کلرید سدیم، گندم

    چکیده:

    گندم (Triticum aestivum L.) یکی از قدیمی­ترین و اولین گیاهان زراعی ‌است که به عنوان ماده اولیه تهیه نان در تغذیه بشر نقش اساسی ایا کرده است. با توجه به رشد جمعیت و نیاز روز­ افزون به محصولات کشاورزی به ویژه گندم می­بایست تولید گندم را در کشور افزایش داد. به علت محدود بودن سطح زمین­های قابل کشت، افزایش تولید گندم مستلزم افزایش عملکرد در واحد سطح است. تنش­های محیطی از قبیل خشکی، شوری و سرما نقش مهمی بر روی عملکرد گیاهان زراعی و بقای آن­ها دارند. تنش شوری یکی از مهم­ترین تنش­های غیر­زیستی است که اثر نامطلوبی بر روی کمیت و کیفیت محصولات زراعی دارد، به طوری که 20 درصد از زمین­های زراعی آبی در جهان متاثر از تنش شوری هستند. بنابراین ارزیابی و بررسی ساز­و­کار مولکولی مقاومت و حساسیت به تنش کلرید سدیم در ارقام مختلف گندم از اهمیت ویژه­ای در این راستا برخوردار است. به این منظور آزمایشی بصورت تکرار دار در سال 1391 درون اتاقک رشد تحت شرایط کنترل شده در دانشکده کشاورزی دانشگاه تبریز اجرا گردید. در این آزمایش از دو رقم آرتا (حساس) و بم (مقاوم) در دو سطح تنش 250 میلی­مولار و فاقد تنش بر پایه طرح کاملا تصادفی در سه تکرار استفاده گردید. زمان اعمال تنش، مرحله دو برگی گیاهان بود. پس از ظهور علائم تنش، اقدام به نمونه برداری و بررسی صفات مورفولوژیک از قبیل طول ریشه، حجم ریشه، وزن تر، وزن خشک، تعداد ریشه و میزان پرولین ریشه گردید. تیمار ارقام گندم با نمک کلرید سدیم به مدت یک هفته تغییر معنی داری از نظر آماری در صفات مرتبط با ریشه شامل طول، وزن­تر و تعداد ریشه ایجاد ننمود. به نظر می­رسد مدت زمان کوتاه مجاورت گیاهان با تنش و بالا بودن ضریب تغییرات از دلایل عمده چنین پاسخی باشند. صفات وزن خشک و تعداد ریشه به ترتیب در سطح احتمال پنج و یک درصد معنی­دار شدند. تنش کلرید سدیم موجب افزایش میزان پرولین در هر دو رقم حساس و متحمل گردید؛ اگرچه میزان افزایش پرولین در رقم حساس به مراتب بیشتر از رقم متحمل بود. بررسی پروتئوم ریشه گندم در رقم حساس با روش الکتروفورز دو بعدی منجر به شناسایی تعداد 21  لکه پروتئینی با تغییرات بیان معنی دار شد که شش لکه پروتئینی افزایش بیان و 15 لکه پروتئینی کاهش بیان نشان دادند. در رقم متحمل تغییرات بیان 49 لکه پروتئینی معنی دار گردید که از بین آن­ها 14 لکه پروتئینی افزایش بیان و 35 لکه پروتئینی کاهش بیان نشان دادند. پروتئین­های یافت شده بر اساس عملکرد بیولوژیکی در گروه­های مهمی مانند پروتئین­های دخیل در متابولیسم انرژی، مهار کننده­های ROSها و سم زدایی، ترجمه پروتئین، پردازش و تخریب، پروتئین­های مرتبط با دیواره سلولی، پروتئین­های مرتبط با متابولیسم اسیدهای آمینه  و هورمون­ها، شبکه انتقال سیگنال درگیر در پاسخ به تنش کلرید سدیم، اسکلت سلولی، پروتئین­های مرتبط با رونویسی، پروتئین­های مرتبط با همبستگی سطح mRNA و پروتئین تقسیم شدند.

    مقدمه

    گندم (Triticum aestivum L.) یکی از گیاهان زراعی مهم است که از سالیان بسیار دور، قبل از آن که بشر به موارد مصرف سایر گیاهان پی ببرد، از آن به عنوان مهم­ترین منبع غذایی استفاده می­کرد. این گیاه از نظر تولید و سطح زیر کشت مهم­ترین محصول کشاورزی ایران است (خدابنده، 1382). با توجه به رشد جمعیت و نیاز روز­ افزون به محصولات کشاورزی به ویژه گندم می­بایست تولید گندم را در کشور افزایش داد. . به علت محدود بودن سطح زمین­های قابل کشت، افزایش تولید گندم مستلزم افزایش عملکرد در واحد سطح است. افزایش عملکرد در واحد سطح به دو روش، یکی اعمال روش­های زراعی پیشرفته و دیگری تولید ارقام مناسب از نظر کیفیت و کمیت عملکرد، مقاومت به بیماری­ها و تحمل تنش­های محیطی قابل حصول است (اهدایی، 1388).

    تنش در گیاه به مفهوم انحراف در فیزیولوژی، نمو و عملکرد طبیعی آن است که اغلب مضر بوده و آسیب­های برگشت ناپذیری به سیستم گیاهی وارد می­نماید. بسیاری از موجودات زنده مثل ویروس­های بیماری­زای گیاهی، باکتری­ها، قارچ­ها، نماتد­ها، حشرات و برخی گیاهان گلدار، انگل گیاهان هستند؛ که از آن­ها به عنوان " تنش ­های زیستی" یاد می­شود. در مقابل، "تنش­ های غیر ­زیستی" توسط اشیا یا مواد و یا شرایط غیر­زنده به گیاهان تحمیل می­شوند. شوری، دمای محیط، رطوبت نسبی، تابش خورشید، مواد مغذی خاک و سایر ویژگی­های فیزیکوشیمیایی خاک موجب تنش­های غیر­زیستی در گیاه می­شوند (ناگاراجان، 2010). تنش­های محیطی از قبیل خشکی، شوری و سرما نقش مهمی بر روی عملکرد گیاهان زراعی و بقای آن­ها دارند (لاتینی و همکاران، 2007). تنش شوری یکی از مهم­ترین تنش­های غیر­زیستی می­باشد که اثر نامطلوبی بر روی کمیت و کیفیت محصولات زراعی دارد، به طوری که 20 درصد از زمین­های زراعی آبی در جهان متاثر از تنش شوری هستند (ژائو و همکاران، 2007). به دلیل قرار­گیری ایران در منطقه آب و هوایی خشک و نیمه خشک، نزدیک به 50 درصد سطح زیر کشت محصولات کشاورزی، به درجات مختلف با مشکل شوری و قلیایی بودن مواجه می­باشد (میر محمدی میبدی و قره یاضی، 1381).

    با پیشرفت سریع در تکنیک­های استخراج ، تفکیک و شناسایی پروتئین، تکنولوژی پروتئومیک یک نقش کلیدی را در توسعه­ی مجموعه پروتئین­های مرتبط با فعالیت زیستی بازی می­کند (وانگ و همکاران، 2011).  پروتئومیک یک روش مبتنی بر تکنیک الکتروفورز دوبعدی[1] است. هر پروتئین یک نقطۀ ایزوالکتریک دارد که در آن بار مثبت و منفی پروتیئن با هم برابر می­شود. در الکتروفورز بعد اول از این خاصیت بهره می­گیرند. ژل بعد اول را به بعد دوم که همان الکتروفورز SDS-PAGE معمولی است منتقل می­کنند. در الکتروفورز بعد دوم حرکت پروتئین­ها در میدان الکتریکی بر اساس وزن مولکولی صورت می­گیرد (لیبلر، 2002). پروتئومیک می­تواند ابزاری قوی برای شناسایی ژن­های کاندیدای مقاومت به تنش باشد (چن و هارمون، 2006). تحقیقات متعددی از پروتئومیک جهت شناسایی پروتئین­های پاسخگو به شوری استفاده نموده­اند. پروتئین­های زیادی یافت شده­اند که بیان آن­ها هماهنگ با غلظت نمک تنظیم می­شود. این پروتئین­ها در فرآیند متابولیسم انرژی، مهار کننده­های ROS و زدودن سموم از آنزیم­ها، ترجمه پروتئین، پردازش و تخریب، پروتئین­های مرتبط با دیواره سلولی، پروتئین­های مرتبط با متابولیسم اسید­های آمینه و هورمون­ها، شبکه انتقال سیگنال درگیر در پاسخ به تنش کلرید سدیم، اسکلت سلولی، پروتئین­های مرتبط با رونویسی و پروتئین­های مرتبط با همبستگی سطح mRNA و پروتئین دخیل هستند (جیانگ و همکاران، 2007).

    Abstract:

    Wheat (Triticum aestivum L.) is the oldest and the first crops played a key role as raw material for bread making in human nutrition. Due to population growth and increasing demand for agricultural products, wheat production should be increased in the country. Due to limited arable  ground, increasing wheat production is required to increase the yield. Environmental stresses such as drought, salinity and low temperature have an impact on crop yield and their survival. Salinity is one of the abiotic stresses that adversely affect the quantity and quality of crops is such a way that 20 percent of the world's irrigated agricultural lands are affected by salinity. Therefore, assessment of molecular mechanism resistance and sensitivity to sodium chloride stress in different varieties of wheat is important. This experiment was carried out in 1391 in a growth chamber under controlled conditions was carried out at the Faculty of Agriculture, university of Tabriz. In this experiment, two varieties, Arta (susceptible) and Bam (resistance), were grown  in both non-stress and stress condition of 250 mM NaCl based on a completely randomized design with three replications. Stress was imposed when the seedlings had two-leafs. By observing the symptoms of stress, the sampling performed for morphological characteristics such as root length, root volume,  shoot wet and dry weight, root numbers and proline content in the roots. Arta treatment of wheat varieties with sodium chloride for a week, did not affected significant changes in root related traits statistically. It seems that short period of expose to stress and high coefficient of variation for most of the traits are the main reasons for such a response. But number and root dry weight, showed significant changes. NaCl stress increased proline content in both sensitive and tolerant cultivars but, the increasment in susceptible variety was far more than tolerant varieties. Proteomic investigation through two-dimensional electrophoresis in root of susceptible variety lead to identification of 21 protein spots with significant changes in compare with 49 spots of  tolerant varieties. In sensitive, six protein spots were up-regulated and 15 spots down regulated, and 14 protein spots spots were up-regulated and 35 spots down regulated in tolerant cultivar. These proteins were grouped functionally in energy metabolism, inhibitors of ROS detoxifying enzymes, protein translation, processing and degradation of proteins associated with cell wall metabolism-related proteins, amino acids and hormones, transmission signals involved in the response to NaCl stress, cytoskeleton-associated proteins with transcription-related protein mRNA and protein levels between groups.

  • فهرست:

    مقدمه. 1

    فصل اول: بررسی منابع

    1-1- اهمیت گیاه‌شناسی و سطح زیرکشت گندم. 3

    1-1-1- تکامل و ژنتیک گندم. 3

    1-2- تنش شوری. 4

    1-2-1- درک تنش شوری. 6

    1-2-2- واکنش‌های عمومی گیاهان نسبت به تنش شوری. 8

    1-2-2-1-  تاثیر شوری بر رشد گیاه 9

    1-2-2-2- تاثیر شوری بر رشد ریشه گیاه 10

    1-2-2-3- اثر تنش شوری بر مواد آلی محصول و اسیدهای آمینه گیاه 11

    1-2-2-4- اثر شوری بر تشکیل رادیکال‌های آزاد در گیاه 15

    1-2-3- نشانگرهای پروتئینی و پروتئومیک.. 15

    1-2-4- پروتئومیک و تنش.. 27

    1-2-5- پروتئومیک و تنش شوری. 28

    فصل دوم: مواد و روش‌ها

    2-1- مواد و روش انجام آزمایش.. 35

    2-1-1- مشخصات محل اجرای آزمایش.. 35

    2-1-2- مواد گیاهی مورد استفاده 35

    2-1-3- روش انجام آزمایش.. 36

    2-1-4- برداشت ریشه ها 37

    2-2- صفات مورد اندازه‌گیری. 38

    2-3- تجزیه‌های آماری. 40

    2-4- آزمایشات الکتروفورز دو بعدی. 40

    2-4-1- تهیه ژل بعد اول (IEF) 41

    2-4-2- استخراج پروتئین. 42

    2-4-3- حل کردن پروتئین. 43

    2-4-4- تهیه ژل بعد دوم (SDS-PAGE) 45

    2-4-5- رنگ‌آمیزی. 48

    2-4-6- تصویر برداری و تجزیه کمی لکه‌های پروتئینی. 51

    فصل سوم: نتایج و بحث

    3-1- تجزیه واریانس صفات. 53

    3-2- اثر کلرید سدیم بر خصوصیات ریشه. 53

    3-3- اثر کلرید سدیم بر میزان پرولین. 57

    3-4- تجزیه و تحلیل پروتئوم بافت ریشه. 58

    3-5- نقش پروتئین‌های شناسایی شده 68

    3-5-1- متابولیسم انرژی. 69

    3-5-2- مهار ROS و سم زدایی. 73

    3-5-3- ترجمه پروتئین، پردازش و تخریب.. 76

    3-5-4- پروتئین‌های مرتبط با دیواره سلولی. 78

    3-5-5- پروتئین‌های مرتبط با متابولیسم اسیدهای آمینه  و هورمون‌ها 80

    3-5-6- شبکه انتقال سیگنال درگیر در پاسخ به تنش کلرید سدیم. 83

    3-5-7- اسکلت سلولی. 84

    3-5-8- پروتئین‌های مرتبط با رونویسی. 85

    3-5-9- پروتئین‌های مرتبط با همبستگی سطح mRNA و پروتئین­های مربوطه. 86

    منابع

    منابع. 89

     

     

    منبع:

     

    ارزانی، ا. 1380. اصلاح گیاهان زراعی. چاپ دوم. مرکز نشر دانشگاه صنعتی اصفهان.

    اهدایی، ب. 1388. اصلاح نباتات. انتشارات دانشگاه تهران.

    بابائیان جلودار، ن. و تباراحمدی، ض. 1381. رشد گیاه در اراضی شور و بایر (ترجمه). چاپ اول. انتشارات دانشگاه مازندران.

    بهنیا، م. 1376. غلات سردسیری. انتشارات دانشگاه تهران.

    حق­نیا، غ. 1370. خاک شناخت (ترجمه). انتشارات دانشگاه فردوسی مشهد.

    حکمت­شعار، ح. 1372. فیزیولوژی گیاهان در شرایط دشوار(ترجمه). چاپ نیکنام تبریز.

    خدابنده، ن. 1382. غلات. انتشارات دانشگاه تهران.

    رحمانی، م. 1377. تاثیر تنش شوری بر پروفیل پروتئین­های ارقام گندم جهت یافتن نشانگر پروتئینی مقاومت به شوری. پایان­نامه کارشناسی ارشد، دانشکده کشاورزی دانشگاه گیلان.

    علی، س.، اسلامی، س.، بهدانی، م. و جامی الاحمدی، م. 1388. اثر استعمال خارجی گلایسین بتا­ئین بر تخفیف اثرات تنش شوری در مرحله جوانه زنی و رشد اولیه­ی گیاهچه­ی ذرت (( Zea mays L.. تنش­های محیطی در علوم کشاورزی، جلد 2: صفحات 63-53.

    فاتحی، ف.، حسین زاده، ع.، علیزاده، ه.، حاجی عباسی، م. و شعبانی، ا. 1390. مطالعه پاسخ پروتئوم برگ جو در شرایط تنش شوری. مجله علوم گیاهی زراعی ایران، جلد 42: 626-617.

    کریمی، ع. و شکاری، ف. 1375. بررسی تحمل واریته جو یزد (چاه افضل) در مرحله جوانه­زنی به غلظت­های مختلف آنیون­ها در خاک­های شور دشت تبریز. موسسه تحقیقات اصلاح و تهیه نهال و بذر. شماره12. ص 1-9.

    کریمیان، ن. ع. 1371. مبانی شیمی خاک (ترجمه). جلد اول. چاپ اول. مرکز نشر دانشکاهی تهران.

    ملکی، م.، نقوی، م.ر.، علیزاده، ه.، پوستینی، ک. و عبد میشانی، س. 1390. اثر شوری بر تغییرات پروفایل پروتئینی در گیاهچه گندم نان(Triticum aestivum L.) رقم روشن. مجله علوم زراعی ایران، جلد 13: 696-684.

    میرمحمدی میبدی، س. ع. م. و قره­یاضی، ب. 1381. جنبه های فیزیولوژیک و به­نژادی تنش شوری گیاهان. مرکز نشر دانشگاه صنعتی اصفهان. 274.

    میقانی، ف و ابراهیم زاده، ح . 1381 . اثر تنش شوری بر متابولیسم پرولین در دو رقم گندم. مجله رستنی­ها، جلد 94:3-87.

    نقوی، م.، قره­یاضی، ب. و حسینی سالکده، ق. 1384. نشانگر­های مولکولی. انتشارات دانشگاه تهران. 320.

    نقوی، م.ر.، قره یاضی، ب.  و حسینی سالکده، ق. 1386. نشانگرهای مولکولی. انتشارات دانشگاه تهران.

    وهاب­زاده، م.، مجیدی هروان، ا.، حاج آخوند میبدی، ه.، طباطبایی، م.ت.، بزرگی پور، ر.، بختیار،ف.، اکبری، ع.، پاکدل، ع.ا.، شریف الحسینی، م.، افیونی، د.، رستمی، ح.، آزرمجو، ح.، کوهکن، ش.ع.، امیری جبال بارز، غ.ر.، صابری، م.ح.، بیناباجی، ح.، قندی، ا.، بحرائی، ص.، ترابی، م.، نظری، ک. و پیرایشفر، ب. 1388. بم، رقم جدید گندم نان برای مناطق اقلیم معتدل با تنش شوری خاک و آب. مجله به­نژادی نهال و بذر. جلد 1-25. 1: 223-226.

    یزدی صمدی، ب. و عبدمیشانی، س. 1383. اصلاح نباتات زراعی. مرکز نشر دانشگاهی تهران.

    Abbasi, F.M. and Komatsu, S. 2004. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics, 7: 2072-2081.

    Abdul Kader, M.D. and Lindberg, S. 2010. Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signaling and Behavior, 5: 233-238.

    Ahmad, P., Jaleel, C.A. and Sharma, R. 2010. Antioxidant defense system, lipid Peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian Journal of  Plant Physiology, 57: 509-517.

    Ali, Q., Ashraf, M. and Athar, H.R. 2007. Exogenously applied proline at different growth stages enhances growth of two maize cultivars growth under water deficit conditions. Pakistan Journal of Botany, 39: 1133-1144.

    Ali, Q., Athar, H.R. and Ashraf, M. 2008. Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24 epibrassino lide. Plant Growth Regulation, 56: 107-116.

    Alia, M. and saradhi, P.P. 1991. Suppression in mitochondrial electron transport is the primary cause behind stress induced proline accumulation. Biochemical and Biophysical Research Communication, 193: 54-58.

    Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology, 107: 1049–1054.

    Alscher, R.G., Erturk, N. and Heath, L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331–1341.

    Anbazhagan, M., Krishnamurthy, R. and Bhagwat, K.A. 1988. Proline: An enigmatic indicator of air pollution tolerance in rice cultivars. Journal of Plant Physiology, 133: 122-123.

    Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373–399.

    Ashraf, M. 1989. The effect of NaCl on water relations, chlorophyll, protein and proline contents of two cultivars of blackgram (vigna mungu L.). Plant Soil, 119: 205-210.

    Ashraf, M. and Ahmad, S. 2000. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop Research, 66: 115-127.

    Ashraf, M. and Fooland, M.R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 206-216.

    Ashraf, M. and Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3-16.

    Ashraf, M. and McNeilly, T. 2004. Salinity tolerance in Brassica oilseeds. Critical reviews in Plant Science, 23(2): 127-214.

    Ashraf, M., Bokhari, M.H. and Mehmood, S. 1989. Effect of four different salts on germination and seedling growth of four Brassica species. Journal of Biology, 35: 173-187.

    Avalbaev, A.M., Bezhorkov, M.V., Kildibekova, A.R. and Fatkutdinova, R.A. 2009. Wheat Germagglutinin Restores Cell Division and Growth Of Wheat Seedlings Under Salinity. Bulgarian Journal of Plant Physiology, Special Issue. 257-263.

    Aziz, A., Martin-Tanguy, J. and Larher, f. 1998. Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Plant Physiology,  104: 195-202.

    Bajguz, A. and Hayat, Sh., 2008. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology, 10: 1016-1020.

    Bassani, M., Neumann, P.M. and Gepstein, S. 2004. Differential expression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Molecular Biology, 56: 367–380.

    Bassi, R. and Sharma, S.S. 1993. Changes in proline content accompanying the uptake of zinc and copper by Lemnaminor. Annals of Botany, 72: 151-154.

    Bates, L.S., Waldren, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.

    Bhattacharjee, S. 2009. Reactive oxygen species and oxidative burst: Roles in stress, Senescence and signal transduction in plants. Current Science, 89: 1113-1120.

    Bhushan, D., Pandey, A., Choudhary, M.K., Datta, A., Chakraborty, S. and Chakraborty, N. 2007. Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Molecular and Cellular Proteomics, 6: 1868–1884.

    Bolwell, G.P. Bozak, K. and Zimmerlin, A. 1994. Plant cytochrome P450. Phytochemistry, 37: 1491-1506.

    Bray, E.A. 2004. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany, 55: 2331–2341.

    Canovas, F.M., Dumas-Gaudot, E., Recorbet, G., Jorrin, J., Mock, H.P. and Rossional, M. 2004. Plant proteome analysis. Proteomics, 4: 285-298.

    Cantero, A., Barthakur, S., Bushart, T.J., Chou, S., Morgan, R.O., Fernandez, M.P., Clark, G.B. and Roux, S.J. 2006. Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiology and Biochemistry ,44: 13–24.

    Cao, S., Jiang, L., Song, S., Jing, R. and Xu, G. 2006. AtGRP7 is involved in the regulation of abscisic acid and stress responses in arabidopsis. Cellular and Molecular Biology Letters, 11: 526–535.

    Celis, J.E., Carter N., Hunter T., Simons K., Small J.V. and Shotton D. 2006. Protein Detection in Gels by Silver Staining: A Procedure Compatible with Mass-Spectrometry .  A Laboratory Handbook. 3rd Edition. v.4. Elsevier. Academic Press.

    Chang, W.W.P., Huang, L., Shen, M., Webster, C., Burlingame, A.L. and Roberts, J.K.M. 2000. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiology, 122: 295–318.

    Chao, W.S., Gu, Y-Q., Pautot, V., Bray, E.A. and Walling, L.L. 1999. Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiology, 120: 979–992.

    Chen, S. and Harmon, A.C. 2006. Advances in plant proteomics, 6: 5504-5516.

    Chen, S., Gollop, N. and Heuer, B. 2009. Proteomic analysis of saltstressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. Journal of Experimental Botany, 60: 2005–2019.

    Chen, W., Provart, N.J., Glazebrook, J., Katagriti, F. and Chang, H.S. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggest their putative function in response to environmental stresses. Plant Cell., 14: 559-574.

    Chen, Y.F., Etheridge, N. and Schaller, G.E. 2005. Ethylene signal transduction. Annals of Botany, 95: 901–915.

    Cheng, Y., Qi, Y., Zhu, Q., Chen, X., Wang, N., Zhao, X., Chen, H., Cui, X., Xu, L. and Zhang, W. 2009. New changes in the plasma-membraneassociated proteome of rice roots under salt stress. Proteomics,  9: 3100–3114.

    Chinnusamy, V., Jagendorf, A.  and Zhu, J.K. 2005. Understanding and improving salt tolerance in plants. Crop Sci., 45: 437-448.

    Chitteti, B.R. and Peng, Z. 2007. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa L.) roots. Journal of Proteome Research, 6: 1718-1727.

    Cicek, N. and Cakirlar, H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology, 28: 66-74.s

    Clark, G.B., Sessions, A., Eastburn, D.J. and Roux, S.J. 2001. Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiology, 126: 1072–1084.

    Claussen, W. 2005. Proline as a measure of stress in tomato plants. Plant Science, 168: 241-248.

    Curthals, G.L., Wasinger, V.C., Hochstrasser, D.F. and Sanchez, J.C. 2000. The dynamic range of protein expression: A challenge for proteomics research. Electrophoresis, 21: 1104-1115.

    Dajic, Z. 2006. Salt stress. In: Madhava, K. V., Raghavendra, A. S. and Janardhan, K. (eds). Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Netherlands, pp. 41-99.

    Datta, J.K., Nag, S., Banerjee, A. and Mondal, N.K. 2009. Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Sciences and Environmental Management, 13: 93-97.

    De Lacerda, C.F., Cambraia, J., Oliva, M.A. and Ruiz, H.A. 2005. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery. Environmental and Experimental Botany, 54: 69-76.

    Delauney, A.J. and Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal, 4: 215-223.

    Demiral, T. and Turkan, I. 2005. Comparative lipid peroxidation, antioxidant defense system and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53:  247-257.

    Devoto, A. and Turner, J.G. 2005. Jasmonate-regulated Arabidopsis stress signalling network. Physiologia Plantarum, 123: 161–172.

    Dhugga, K.S., Tiwari, S.C. and Ray, P.M. 1997. A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: purification, gene cloning, and trans-Golgi localization. Proceedings of the National Academy of Sciences, USA, 94: 7679–7684.

    Di Martino, C., Delfine, S., Pizzuto, R., Loreto, F. and Fuggi, A. 2003. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist, 158: 455–463.

    Dixon, D.P., Lapthorn, A. and Edwards, R. 2002. Plant glutathione transferases. Genome Biology, 3: REVIEWS2004.

    Dutta Gupta, S. 2010. Role of free radicals and antioxidants in in­-vitro morphogenesis. In: Dutta Gupta, S. (eds). Reactive Oxygen Species and Antioxidants in Higher Plants. Science Publishers, India, pp. 229-249.

    Elstner, E.F. 1987. Metabolism of activated oxygen species. The biochemistry of plants. Biochemistry of Metabolism. Academic Press San Diego, CA. Vol. II: 252-315.

    Epstein, E. 1985. Salt tolerant crops, origins, development and prospects of concept. Plant Soil., 89: 187-198.

    Espartero, J., Pintor-Toro, J.A. and Pardo, J.M. 1994. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Molecular Biology, 25: 217–227.

    Faik, A., Abouzouhair, J. and Sarhan, F. 2006. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): Identification and bioinformatic analyses. Molecular Genetics and Genomics, 276: 478-494.

    FAO. 2013. FAOSTAT. www.faostat.fao.org

    Fenn, J.b., Mann, M., Meng, C.K., Wong, S.F. and whithouse, C.M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246: 64-71.

    Flowers, T.J., Torke, P.F. and Yeo, A.R. 1977. The mechanism of salt tolerance in halophytes. Annual Review of Plant physiology, 28: 89-121.

    Fouge`re, F., Lerudulier, D. and Streeter, J.G. 1991. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L). Plant Physiology, 96: 1228–1236.

    Gao, L., Yan, X. Li, X., Guo, G., Hu, Y., Ma, W. and Yan, Y. 2011. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry, 72: 1180-1191.

    Gelhaye, E., Rouhier, N. and Jacquot, J.P. 2004. The thioredoxin h system of higher plants. Plant Physiology and Biochemistry, 42: 265-271.

    Gong, Q., Li, P., Ma, S., Indu, S. and Bohnert, H.J. 2005. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. The Plant Journal, 44: 826-839.

    Grabski, C.A. and Burgess, R.R. 2001. Preparation of protein samples for SDS-polyacrylamide gel electrophoresis: procedures and tips. Innonations, 13: 10-13.

    Halliwell, B. and Gutteridge, J.M.C. 1985. Free radicals in biology and medicine. Clarendon Press Oxford.

    Hamdia, M.A. and Shaddad, M.A.K. 2010. Salt tolerance of crop plants. Journal of Stress Physiology & Biochemistry, 6: 64-90.

    Harinasut, P., Poonsopa, D., Roengmongkol, K. and Charoensataporn, R. 2003. Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia, 29: 109-113.

    Hsieh, J.F. and Chen, S.T. 2008. A functional proteomic approach to the identification and characterization of protein composition in wheat leaf. Current Proteomics, 5: 253-266.

    Huang, X.Y., Chao, D.Y., Gao, J.P., Zhu, M.Z., Shi, M. and Lin, H.X. 2009. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes and Development, 23: 1805-1817.

    Huck, C.J. 2004. Integrated transcriptome and proteome data; The challenges ahead. Breif Functional Genomics and Proteomics, 3: 212-219.

    Hunter, T.C., Andon, N.L., Koller, A., Yates, J.r. and Haynes, P.A. 2002. The functional proteomics toolbox: Methods and applications. Journal of Chroatography, 782: 165-181.

    Huo, C.M., Zhao, B.C., Ge, R.C., Shen, Y.Z. and Huang, Z.J. 2004. Proteomic analysis of the salt tolerance mutant of wheat under salt stress. Acta Genetica Sinica, 31: 1408-1414.

    Hurkman, W.J., Lane, B.G. and Tanaka, C.K. 1994. Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (Hordeum vulgare L.) roots. Plant Physiology, 104: 803–804.

    Imlay, J.A. and Linn, S. 1988. DNA damage and oxygen radical toxicity. Science, 240: 1302-1309.

    Jiang, Y. and Deyholos, M. 2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 6: 25.

    Jiang, Y., Yang, B., Harris, N.S. and Deyholos, M.K. 2007. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 58: 3591-3607.

    Jiang, Y-Q. and Deyholos MK. 2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 6: 25.

    Joseph, B. and Jini, D. 2010. Proteomic analysis of salinity stress-responsive proteins in plants. Asian Journal of Plant Sciences, 9: 307-313.

    Joseph, B., Jini, D. and Sujatha, S. 2010. Biological and physiological perspectives of specificity in abiotic salt stress response from various rice plants. Asian Journal of Agricultural Sciences, 2: 99-105.

    Jung, J.Y. Kim, Y.W., Kwak, J.M., Hwang, J.U., Young, J., Schroeder, J.I., Hwang, I. and Lee, Y. 2002. Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell, 14: 2399-2412.

    Kant, S. and Kafkafi, U. 2005. Impact of Mineral Deficiency Stress. Rehovot, Israel.

    Kao, W.Y., Tsai, T.T. and Shih, C.N. 2003. Photosynthetic gas exchange and chlorphyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica, Springer, 41: 415-419.

    Kavi Kishor, P.B., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K. R.S.S., Rao, S., Reddy, K.J., Theriappan, P. and Sreenivasulu, N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88: 424-438.

    Kawaguchi, R., Girke, T., Bray, E.A. and Bailey-Serres, J. 2004. Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. The Plant Journal, 38: 823–839.

    Kim, J.S., Park, S.J., Kwak, K.J., Kim, Y.O., Kim, J.Y., Song, J., Jang, B., Jung, C.H. and Kang, H. 2007b. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids Research, 35: 506–516.

    Kohl, D.H., Schubert, K.R., Carter, M.B., Hagedorn, C.H. and Shearer, G. 1998. Proline metabolism in N2-fixing  root nodules: Energy transfer and regulation of synthesis. Proceedings of the National Academy of Sciences, 85: 2036-2040.

    Konishi, H., Yamane, H., Maeshima, M. and Komatsu, S. 2004. Characterization of fructose-bisphosphate aldolase regulated by gibberllin in roots of rice seedling. Plant Molecular Biology, 56: 839-848.

    Kuo, C.G., Chen, H.M. and Ma, L.H. 1986. Effect of high temperature on proline content in tomato floral buds and leaves. Journal of the American Society for Horticultural Science, 111: 746-750.

    Latini, A., Rasi, C., Sperandei, M., Cantale, C., Iannetta, M., Dettori, M., Ammar, K. and Galeffi, P. 2007. Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions. Annals of Applied  Biology, 150: 187-195.

    Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B. and Zhu, J.K. 2002. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO Journal, 21: 2692–2702.

    Leon, J., Rojo, E., Titarenko, E. and Sanchez-Serrano, J.J. 1998. Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Molecular and General Genetics, 258: 412–419.

    Leshem, Y., Seri, L. and Levine, A. 2007. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant Journal, 51: 185-97.

    Levitt, J. 1972. Physiological Ecology: A Series of Monographs Texts and Treatises. Academic press London.

    Li, J., Wu, X-D., Hao, S-T., Wang, X-J. and Ling, H-Q. 2008. Proteomic response to iron deficiency in tomato root. Proteomics, 8: 2299–2311.

    Liebler, D.C. 2002. Introduction to proteomics: Tools for the new biology. Humana Press, Totowa, New Jersey.

    Lisenbee, C.S., Lingard, M.J. and Trelease, R.N. 2005. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Planta, 43: 900–914.

    Liu, D.L., Zhang, X.X., Cheng, Y.X., Takano, T. and Liu, S.K. 2006. rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 44: 380–386.

    Liu, Q., Zhang, Y. and Shouyi, C. 2000. Plant protein kinase genes induced by drought, high salt and cold stresses. Chinese Science Bulletin, 45: 1153-1157.

    Locato, V., Pinto, M.C., Paradiso, A. and Gara, L. 2010. Reactive Oxygen species and ascorbate-glutathione interplay in signaling and stress responses. In: Dutta Gupta, S. (eds). Reactive Oxygen Species and Antioxidants in Higher Plants. Science Publishers, India, pp. 45-65.

    Lutts, S., Majerus, V. and Kinet, J.M. 1999. NaCl effectson proline metabolism in rice(Oryza sativa) seedling. Plant Physiology, 105: 450-458.

    Main, M.A.R., Nafziger, E.D., Kolb, F.L. and Teyker, R.H. 1993. Root growth of wheat genotypes in hydroponic culture and in the greenhouse under different soil moisture regimes. Crop Science, 33(2): 283-286.

    Manaa, A., Ahmed, H.B., Valot, B., Bouchet, J-P., Aschi-smiti, S., Causse, M. and Faurobert, M. 2011. Salt and genotype impact on plant physiology and root proteome variations in tomato. Journal of Experimental Botany, pp. 1-17.

    Martz, F.O., Maury, S., PinA˜ §on, G.l. and Legrand, M. 1998. cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Molecular Biology, 36: 427–437.

    Matysic, J., Alia Balu, B. and Mohanty, P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82: 525-531.

    Meloni, D.A., Oliva, M.A., Martinez, C.A. and Cambraia, J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49: 69-76.

    Membre, N., Bernier, F., Staiger, D. and Berna, A. 2000. Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta, 211: 345–354.

    Mendez, A., Matamoros, M.A., Sanmamed, P., Dietz, K., Cejudo, F.J., Rouhier, N., Sato, S., Tabata, S. and Becana, M. 2011. Proxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japanicus. Plant Physiology, 156: 1535-1547.

    Miflin, B.J. and Habash, D.Z. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 53: 979–987.

    Milla, M.A., Maurer, A., Huete, A.R. and Gustafson, J,P. 2003. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant Journal, 36: 602–615.

    Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405–410.

    Moftah, A.B. and Michel, B.B. 1987. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiology, 83: 283-286.

    Moller, I.M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 561–591.

    Morant-Manceau, A., Pradier, E. and Tremblin, G. 2004. Osmotic adjustment, gas exchanges and chlorophyll  fluorescence of a hexaploid Triticale and its parental species under salt stress. Journal of Plant Physiology, 161: 25-33.

    Mortimer, J.C., Laohavisit, A., Macpherson, N., Webb, A., Brownlee, C., Battey, N.H. and Davies, J.M. 2008. Annexins: multifunctional components of growth and adaptation. Journal of Experimental Botany, 59: 533–544.

    Mousavi, A. and Hotta, Y. 2005. Glycine-rich proteins: a class of novel proteins. Applied Biochemistry and Biotechnology, 120: 169–174.

    Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment, 25: 239-250.

    Mylona, P.V. and Polidoros, A.N. 2010. ROS regulation of antioxidant Genes. In: Dutta Gupta, S. (eds). Reactive Oxygen Species and Antioxidants in Higher Plants. Science Publishers, India, pp. 101-129.

    Nagarajan, S. 2010. Abiotic tolerance and crop improvement. In: Pareek, A., Sopory, S. K., Bohnert, H. J. and Govin, D. (eds). Abiotic stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation. Springer, Netherlands, pp. 199-216.

    Naidu, B.P., Paleg, L.G., Aspinall, D., Jennings, A.C. and Jones, G.P. 1991. Amino acid and glycine betaine accumulation in cold-stresssed wheat seedlings. Phytochemistry, 30: 407-409.

    Naseer, S.H. 2001. Response of barley (Hordeum vulgar L.) at various growth stages to salt stress. Journal of Biological Science, 1(5): 326-329.

    Ndimba, B.K., Chivasa, S., Simon, W.J. and Slabas, A.R. 2005. Identification of Arabidopsis salt and osmotic stress responsive proteins using two dimensional difference gel electrophoresis and mass spectrometry. Proteomics, 5: 4185–4196.

    O’Farell, P.H. 1975. High-resolution two dimensional electrophoresis of protein. Journal of  Biological Chemistry, 250: 4007-4021.

    Ouyang, B., Yang, T., Li, H., Zhang, L., Zhang, Y., Zhang, J., Fei, Z. and Ye, Z. 2007. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany, 58: 507–520.

    Pakusch, A-E., Kneusel, R.E. and Matern, U. 1989. S-adenosylmethionine: trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures. Archives of Biochemistry and Biophysics, 271: 488–494.

    Pardha, S.P., Alia, A.S. and Prasad, K.V.S.K. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochemical and Biophysical Research Communications, 209: 1-5.

    Parida, A.K. and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324-349.

    Parida, A.K., Das, A.B., Mittra, B. and Mohanty, P. 2004. Salt-stress induced alterations in protein profile and protease activity in the mangrove (Bruguiera parviflora L.). Naturforschung (A Journal of Chemical Sciences), 59:  408-414.

    Parker, R., Flowers, T.J., Moore, A.L. and Harpham, N.V.J. 2006. An accurate and reproducible method for proteome profiling of salt stress in the rice leaf lamina. Journal of Experimental Botany, 57:1109-1118.

    Passardi, F., Cosio, C., Penel, C. and Dunand, C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Reporter, 24: 255–265.

    Passardi, F., Penel, C. and Dunand, C. 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science, 9: 534–540.

    Persson, S., Rosenquist, M., Svensson, K., Galvao, R., Boss, W.F. and Sommarin, M. 2003. Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiology, 133: 1385–1396.

    Poustini, K., Siosemardeh, A. and Ranjbar, M. 2007. Proline accumulation as response to salt stress in 30 wheat (Triticum aestivum) cultivars. Genetic Resources and Crop Evolution, 54: 925-934.

    Rabilloud, T. 2002. Two-dimensional gel electrophoresis in proteomics old, old fashioned, but it still climbs up the mountains. Proteomics, 2: 3-10.

    Rabilloud, T., Chevalet, M., 2002. Solubilisation of protein in 2D electrophoresis. In: Rabilloud, T. (ed.), Proteome research: Two-Dimensional Gel Electrophoresis and Identification of Protein. Springer-Verlag, Heidelberg, Germany, pp. 20-21. Protocol 2.

    Rajendrakummar, C.S., Reddy, B.V. and Reddy, A.R. 1994. Proline-protein interaction: Protection of structural and functional integrity of M4 lactate dehydrogenase. Biochemical and Biophysical Research Communications, 201: 957-963.

    Rapala-Kozik, M., Kowalska, E. and Ostrowska, K. 2008. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. Journal of Experimental Botany, 59: 4133–4143.

    Rasoulnia, A., Bihamata, M.R., Peyghambari, S.A., Alizadeh, H. and Rahnama, A. 2011. Proteomic response of barley leaves to salinity. Molecular Biology Reports, 38: 5055-5063.

    Rezvani Moghaddam, P. and Koocheki, A. 2001. Research history on salt affected lands of Iran: Present and future prospects – Halophytic ecosystem – International Symposium on Prospects of Saline Agriculture in the GCC Countries. Dubai, UAE.

    Ringli, C., Keller, B. and Ryser, U. 2001. Glycine-rich proteins as structural components of plant cell walls. Cellular and Molecular Life Sciences, 58: 1430–1441.

    Roxas, V.P., Smith, R.K-J., Allen, E.R. and Allen, R.D. 1997. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 15: 988–991.

    Sahi, C., Singh, A., Kumar, K., Blumwald, E. and Grover, A. 2006. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functional and integrative Genomics, 6: 263-284.

    Sanchez, F.J., Manzanares, M., De Andres, E.F., Tenorio, J.L. and Ayerbe, L. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crop Research, 59: 225-235.

    Saqib, M, Akhtar, J. and Qureshi, R.H. 2004. Pot study on wheat growth in saline and waterlogged compacted soil II. Root growth and leaf ionic relations. Soil & Tillage Research, 77: 179-187.

    Saqib, M., Zorb, C. and Schubert, S. 2006. Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Journal of Plant Nutrition and Soil Science, 169: 542-548.

    Seki, M., Narusaka, M. and Ishida, J. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal, 31: 279–292.

    Shahbaz, M., Ashraf, M., Akram, N.A., Hanif, A., Hameed, S., Joham, S. and Rehman, R. 2010. Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower  (Helianthus annuus L.). Acta Physiologiae Plantarum, Springer, 10: 639-649.

    Shakirova, F.M., Sakhabutdinova, A.R., Bozrutkova, M.V., Fatkhutdinova, R.A. and Fatkhutdinova, D.R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164:  317-322.

    Sharma, N., Rahman, M.H., Strelkov, S., Thiagarajah, M., Bansal, V.K. and Kav, N. 2007. Proteome-level changes in two Brassica napus lines exhibiting differential responses to the fungal pathogen Alternaria brassicae. Plant Science, 172: 95-110.

    Shoji, T., Suzuki, K., Abe, T., Kaneko, Y., Shi, H., Zhu, J.K., Rus, A., Hasegawa, P.M. and Hashimoto, T. 2006. Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant and Cell Physiology, 47: 1158–1168.

    Silveria, J.A., Viegas Rade, A., de Rocha, I.M., Moreira, A.C., Moreira Rade, A. and Oliveira, J.T. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in Cashew leaves. Journal of Plant. Physiology, 160: 115-23.

    Singh, D.N., Masood, A.M. and Basu, D.S. 2000. Genetic variation in dry matter partitioning in shoot and root influences of chickpea to drought. 3rd International Crop Science Congress, 17-22 August, 2000, Hamburg, Germany.

    Sivaguru, M., Pike, S., Gassmann, W. and Baskin, T.I. 2003. Aluminum rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant and Cell Physiology, 44: 667–675.

    Skopelitis, D.S., Paranychianakis, N.V., Paschalidis, K.A., Pliakonis, E.D., Delis, I.D., Yakoumakis, D.I., Kouvarakis, A., Papadakis, A.K., Stephanou, E.G. and Roubelakis-Angelakis, K.A. 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell, 18: 2767–2781.

    Smirnoff, N. 1998. Plant resistance to environmental stress. Current Opinion in Plant Biology, 9: 214–219.

    Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpour, A.A., Jazii, F.R.,  otamed, N. and Komatsu, S. 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Science, 29: 8-19.

    Song, X. 2007. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 7: 3538-3557.

    Srinivas, V. and Bala Subramanian, D. 1995. Proline is a protein compatible hydrotrope. Langmuir, 11: 2830-2833.

    Steudle, E. 2000. Water uptake by roots: effects of water deficit. Journal of Experimental Botany, 51: 1531–1542.

    Stewart, C.R. 1972. Proline content and metabolism during rehydration of wilted excised leaves in the dark. Plant Physiology, 50: 679-681.

    Stone, J.M. and Walker, J.C. 1995. Plant protein kinase Families and signal transduction. Plant Physiology, 108: 451-457.

    Sugihara, K., Hanagata, N., Dubinsky, Z., Baba, S. and Karube, I. 2000. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiology, 41: 1279-1285.

    Tada, Y. and Kashimura, T. 2009. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorrhiza. Plant Cell Physiology, 50: 439-446.

    Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I. and Dubinsky, Z. 2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza Aquatic Botany, 68:  15-28.

    Tanaka, A., Christensen, M.J., Takemoto, D., Park, P. and Scott B. 2006. Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. The Plant Cell, 18: 1052–1066.

    Thelen, J.J. 2007. Introduction to proteomics: A brief historical perspective on contemporary approaches. In J. Samaj, J.J. Thellen (eds), Plant Proteomics Springer, Berlin, pp. 1-13.

    Thornalley, P.J. 1996. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification—a role in pathogenesis and antiproliferative chemotherapy. General Pharmacology, 27: 565–573.

    Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428: 419-438.

    Tuteja, N. 2009. Integrated calcium signaling in plants. In: Baluška, F. and Mancuso, S. (eds). Signaling in Plants. Springer-Verlag, Heidelberg, Germany, PP. 29-49.

    Vaucheret, H., Kronenberger, J., Lepingle, A., Vilaine, F., Boutin, J.P. and Caboche, M. 1992. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant Journal, 2: 559-569.

    Veeranagamallaiah, G., Jyothsnakumari, G., Thippeswamy, M., Chandra Obul Reddy, P., Surabhi, G-K., Sriranganayakulu, G., Mahesh, Y., Rajasekhar, B., Madhurarekha, C. and Sudhakar C. 2008. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Science, 175: 631–641.

    Venekamp, J.H. 1989. Regulation of cytosol acidity in plants under conditions of drought. Plant Physiology, 76: 112-117.

    Vitámvás, P., Kosová, K. and Práŝil, I.T. 2007. Proteome analysis in plant stress research. Czech Journal of Genetics and Plant Breeding, 43: 1-6.

    Wang, J., Li, X., Liu, Y. and Zhao, X. 2010. Salt stress induces programmed cell death in Thellungiella halophila suspension-cultures cells. Journal of Plant Physiology, 167: 1145-1151.

    Wang, M-C., Peng, Z-Y., Li, C-L., Li, F., Liu, C. and Xia G-M. 2008. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 8: 1470–1489.

    Wang, W., Vinocur, B., Shoseyov, O. and Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9: 244–252.

    Wang, X., Fan, P., Song, H., Chen, X., Li, X. and Li, Y. 2009. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research, 8: 3331–3345.

    Wang, X., Zhang, W., Li, W. and Mishra, G. 2007. Phospholipid signaling in plant response to drought and salt stress. In: Jenk, M.A., Hasegawa, P.M. and Jaain, S.M. (eds). Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Netherlands, pp. 183-192.

    Wang, Y., Kim, S.G., Kim, S.T., Agrawal, G.K., Rakwal, R. and Kang, K.Y. 2011. Biotic Stress-Responsive Rice Proteome. Journal of Plant Biology, 54: 219-226

    Washburn, M.P., Wolters, D. and Yates, J.R. 2001. Large scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 19: 242-247.

    Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphry –smith, I., Hochstrasser, D.F. and Williams, K.L. 1996. Progress with proteome project: Why all proteins by a genome should be identified and how to do it. Biotechnology and Genetic engineering Revolution, 13: 19-50.

    Wise, R.R. and Naylor, A.W. 1987. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and endogenous antioxidants. Plant physiology, 83:  278-282.

    Witzel, K., Weidner, A., Surabhi, G.K., Borner, A. and Mock, H.P. 2009. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. Journal of Experimental Botany, 60: 3545-3557.

    Wolters, D.A., Washburn, M.P. and Yates, J.R. 2000. An automated multi dimensional protein identification technology for shotgun. Proteomics Analytical Chemistry, 73: 5683-5690.

    Xing, T., Ouellette, T. and Miki, B. 2002. Towards genomics and proteomics studies of protein phosphorylation in plant-pathogen interactions(review). Trends Plant Science, 7: 224-230.

    Xu, Z., Escamilla-Trevino, L. and Zeng, L. 2004. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Molecular Biology, 55: 343–367.

    Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K. and Sopory, S.K. 2005. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications, 337: 61–67.

    Yan, S.P., Zhang, Q.Y., Tang, Z.C., Su, W.A. and Sun, W.N. 2006. Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular and Cellular Proteomics, 5: 484–496.

    Yang,  C.W., Chong,  J.N., Kim, C.M., Li, C.Y., Shi, D.C. and Wang, D.L. 2007. Osmotic adjustment and ion balance traits of an alkali resistant halophyte kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 294: 263-276.

    Yang, K-S., Kim, H-S., Jin, U-H., Lee, S., Park, J-A., Lim, Y. and Pai H-S. 2007. Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta, 225: 1459–1469.

    Yang, Z. 2002. Small GTPases: versatile signaling switches in plants. The Plant Cell (Suppl), 14: S375–S388.

    Yotov, W.V., Moreau, A. and St-Arnaud, R. 1998. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Molecular and Cellular Biology, 18: 1303–1311.


موضوع پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, نمونه پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, جستجوی پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, فایل Word پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, دانلود پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, فایل PDF پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, تحقیق در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, مقاله در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, پروژه در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, پروپوزال در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, تز دکترا در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, تحقیقات دانشجویی درباره پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, مقالات دانشجویی درباره پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, پروژه درباره پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, گزارش سمینار در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, پروژه دانشجویی در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, تحقیق دانش آموزی در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, مقاله دانش آموزی در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم, رساله دکترا در مورد پایان نامه تجزیه پروتئوم ریشه گندم تحت تنش کلرید سدیم

چکیده تنش شوری یکی از مهمترین تنش­های غیر زیستی در جهان بوده وآثارمنفی آن بر رشد گیاهان زراعی باعث افزایش تحقیقات در زمینه تحمل به شوری باهدف بهبود تحمل گیاهان شده است. کودهای پتاسه علاوه بر افزایش رشد به بهبود کیفیت محصول و افزایش مقاومت گیاه در برابر عوامل نامساعد محیطی (شوری، خشکسالی، سرما و …) کمک می‌کند. از آنجایی که قارچهای میکوریز با اکثرخانواده های اصلی گیاهان زراعی ...

پایان نامه‌ی کارشناسی ارشد رشته‌ی جنگلداری پاسخ­های رویشی، فیزیولوژیکی و ژنتیکی دو گونه بلوط زاگرس ­(Q. brantii و Q. libania) تحت تنش خشکی چکیده جنگل­ های زاگرس حدود40 درصد از کل جنگل­های ایران را به خود اختصاص داده اند و بیشترین تأثیر را در تأمین آب، حفظ خاک، تعدیل آب و هوا و تعادل اقتصادی- اجتماعی در کل کشور دارند. این جنگل­ها به علت دارا بودن اقلیم مدیترانه­ای دارای فصل خشک ...

پایان نامه کارشناسی ارشد رشته کشاورزی گرایش اصلاح نباتات چکیده د تنش شوری پس از تنش خشکی، دومین عامل محدود کننده عملکرد گیاهان زراعی در سطح جهانی است. سورگوم بر اساس تقسیم‌‌‌‌‌‌بندی گیاهان از نظر تحمل به تنش شوری، در کلاس نیمه‌متحمل قرار می‌گیرد و آستانه تحمل به شوری آن 9/4 تا 8/6 دسی‌زیمنس بر متر است. در مرحله رویشی و مراحل اولیه زایشی، بسیارحساس بوده در حالی که در دوره گلدهی و ...

پایان‌نامه برای دریافت درجه کارشناسی‌ارشد در رشته مهندسی باغبانی چکیده : دستیابی به کشاورزی پایدار در کنار افزایش عملکرد محصولات کشاورزی و تامین سلامت جامعه از اهداف محققین در بخش کشاورزی است. در چند دهه اخیر مصرف نهاده های شیمیایی در اراضی کشاورزی موجب معضلات زیست محیطی عدیده ای از جمله آلودگی منابع آب و خاک ، کاهش حاصلخیزی و از بین رفتن تعادل عناصر شیمیایی در خاک است. از جمله ...

پایان نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی کشاورزی (M.Sc) گرایش: زراعت چکیده به ‌منظور بررسی تاثیر منابع مختلف کود ازته و آلی بر عملکرد و اجزای عملکرد ذرت سینگل کراس 704 در منطقه دهلران آزمایشی در تابستان سال 1392 بصورت آزمایش کرتهای خردشده در قالب طرح بلوکهای کامل تصادفی در چهار تکرار مورد مطالعه قرار گرفت.عامل اصلی ترکیب کود نیتروژنه و کمپوست در 5 سطح شامل A1 ...

پایان نامه تحصیلی جهت اخذ درجه کارشناسی ارشد رشته مهندسی کشاورزی گرایش زراعت چکیده به منظور تعیین تاریخ کاشت مناسب و بررسی اثر کاربرد مالچ بر رشد و عملکرد لوبیا آزمایشی در قالب طرح بلوک های کامل تصادفی با سه تکرار در سال زراعی 1393 در مزرعه تحقیقاتی واقع در روستای حسن آباد کوچصفهان اجرا گردید. فاکتورهای آزمایش شامل تاریخ کاشت در سه سطح(3، 10 و 17 اردیبهشت) و دو سطح استفاده از ...

پایان‌نامه برای دریافت درجه‌کارشناسی‌ارشد در رشته مهندسی‌علوم‌و‌صنایع غذایی گرایش: علوم و صنایع غذایی چکیده با توجه به موارد مختلف استفاده از سبزی­ها در تغذیه انسان­ها و نیز به دلیل خصوصیات طعم و مزه و مفید بودن آنها در حفظ سلامتی و تندرستی روز به روز بر اهمیت آنان افزوده می­شود. با توجه به عمر پس از برداشت اندک و آلودگی میکروبی سبزی­ها لزوم تحقیقات در این زمینه ضروری به نظر ...

پایان نامه‌ی کارشناسی ارشد رشته‌ی مهندسی عمران گرایش خاک و پی امروزه، با توجه به پیشرفت صنعت تونل سازی، نیاز به آنالیز و طراحی سازه­ های زیر زمینی در محیط­ های سنگی بیشتر از گذشته احساس می­گردد. اگرچه نرم افزار­های عددی و کاربردی زیادی در این زمینه موجود هستند اما هیچ یک در تمام زمینه­ها کامل و بی نقص نمی­باشد و هر یک در محیط و شرایطی خاص بهترین کاربرد را دارا می­باشند. در نتیجه ...

چکیده فارسی اثر تنش شوری بر خصوصیات رشدی برخی از ژنوتیپ­ های انتخابی بادام (Prunus dulcis) پیوند شده روی پایه GF677 ترکیب پایه و پیوندک می­تواند خصوصیات رشدی و غلظت عناصر غذایی برگ و ریشه­های بادام را در شرایط تنش شوری تحت تأثیر قرار دهد. به‌منظور ارزیابی اثر تنش شوری بر خصوصیات مورفولوژی، فیزیولوژی، بیوشیمیایی و غلظت عناصر غذایی پرمصرف و کم­مصرف در برگ و ریشه­های تعدادی از ...

پایان­نامه کارشناسی ارشد سازه چکیده در فرآیند جوشکاری بعد از مرحله­ی سرد شدن جسم، به علت توزیع ناهمسان دما، تنش­هایی در آن باقی می­ماند که تنش‌های پسماند نامیده می­شود. برای به دست آوردن این تنش­ها باید تاریخچه دمایی جسم در طی فرآیند جوشکاری در دسترس باشد. برای این منظور ابتدا یک تحلیل حرارتی صورت می­گیرد تا تاریخچه دمایی جسم به دست آید. با داشتن تاریخچه دمایی و انجام تحلیل ...

ثبت سفارش