فهرست:
چکیده : ...............................................................................................................................1
1. فصل اول:کلیات تحقیق.. 2
1-1-مقدمه.. ............................................................................................................................................2
1-2-سیستم های میکرو/نانوالکترومکانیکی.. 4
1-3-اهداف پژوهش و روند انجام پروژه. 5
2. فصل دوم :ادبیات تحقیق.. .....8
2-1-مباحث نظری.. 8
2-2-روش های مختلف مدلسازی در مقیاس های مختلف.... 8
2-2-1- روش مدل سازی اتمی.. 8
2-2-2- روش های چند مقیاسی.. 9
2-2-3- روش اتمی پیوسته.. 9
2-2-4- مکانیک کوانتومی.. 11
2-2-5- دینامیک مولکولی.. 12
2-2-6- روش مونت کارلو. 12
2-2-7- دینامیک نابجایی.. 13
2-2-8- روش مکانیک مولکولی.. 13
2-2-9- تئوری های مرتبه بالای محیط پیوسته.. 14
2-2-9-1-تئوری کسرات و نظریه تنش های تزویجی...................................................................................16
2-3-الاستیسیته ی غیرموضعی.. 18
2-4-معرفی تئوری های ورق. 21
2-5-تئوری کلاسیک ورق. 22
2-6-تئوری تغییر شکل برشی مرتبه اول.. 23
2-7-تئوری مرتبه سوم برشی.. 23
2-8-ساختارهای نانو. 24
2-9-نانولوله های کربنی را به پنج دسته میتوان تقسیم کرد. 24
2-10-محیط الاستیک.... 26
2-11-پیشینه ی پژوهش.... 27
2-12- جمع بندی فصل دوم .................................................................................................................31
3..... فصل سوم:روابط وفرمول ها 32
3-1-مدلسازی نانو صفحه و ارائه راه حل عددی.. 32
3-2-تئوری الاستیسیته ی غیرموضعی.. 32
3-3-استخراج معادلات حرکت... 35
3-4-حل تحلیلی.. 51
3-5-حل عددی.. 52
3-5-1- روش عددی GDQ... 52
3-5-1-1 تعیین مختصات گره ها ......................................................................................................................55
3-5-1-2 تعیین ضرایب وزنی ..............................................................................................56
4. فصل چهارم::شبیه سازی نتایج.. 59
4-1-نتایج عددی.. 59
4-2-صحت سنجی.. 61
4-3-کمانش نانو صفحه.. 63
4-3-1- تاثیر ابعاد صفحه بر نیروی کمانش.... 64
4-3-2- تاثیر پارامتر ابعادی وشرایط مرزی بر روی نیروی کمانش.... 67
4-4-تاثیر پارامتر ابعادی بر روی مودهای مختلف.... 68
4-4-1- تاثیر مدول وینکلر بر نیروی کمانش.... 70
4-4-2- بررسی اثر ضریب وینکلر بر روی مودهای مختلف.... 72
4-5-تاثیر ضریب وینکلر بر نیروی کمانش برای طول های مختلف.... 73
4-5-1- تاثیر ضریب برشی پسترناک بر روی نیروی کمانش.... 75
4-5-2- تاثیر ضریب برشی پسترناک بر مودهای مختلف نیروی کمانشی.. 75
5. فصل پنجم: نتیجه گیری و پیشنهادات.. 77
5-1-پیشنهاد پژوهش های آتی.. 78
6. منابع. 80
منبع:
1.
[1]. Li, C. and T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 2003. 40(10): p. 2487-2499.
[2]. Cosserat, E., et al., Théorie des corps déformables. 1909: A. Hermann Paris.
[3]. Eringen, A.C., On the foundations of electroelastostatics. International Journal of Engineering Science, 1963. 1(1): p. 127-153.
[4]. Eringen, A.C., Linear theory of micropolar viscoelasticity. International Journal of Engineering Science, 1967. 5(2): p. 191-204.
[5]. Tauchert, T., W. Claus, and T. Ariman, The linear theory of micropolar thermoelasticity. International Journal of Engineering Science, 1968. 6(1): p. 37-47.
[6]. Eringen, A.C., Screw dislocation in non-local elasticity. Journal of Physics D: Applied Physics, 1977. 10(5): p. 671.
[7]. Eringen, A.C., Microcontinuum field theories: foundations and solids. Vol. 487. 1999: Springer New York.
[8]. Mindlin, R. and H. Tiersten, Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 1962. 11(1): p. 415-448.
[9]. Mindlin, R., Influence of couple-stresses on stress concentrations. Experimental Mechanics, 1963. 3(1): p. 1-7.
[10]. Banks Jr, C.B. and M. Sokolowski, On certain two-dimensional applications of the couple stress theory. International Journal of Solids and Structures, 1968. 4(1): p. 15-29.
[11]. Weitsman, Y., Couple-stress effects on stress concentration around a cylindrical inclusion in a field of uniaxial tension. Journal of Applied Mechanics, 1965. 32: p. 424.
[12]. Murmu, T. and S. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(7): p. 1232-1239.
[13]. Xiang, Y., C. Wang, and S. Kitipornchai, Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations. International journal of mechanical sciences, 1994. 36(4): p. 311-316.
[14]. Liew, K., X. He, and S. Kitipornchai, Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Materialia, 2006. 54(16): p. 4229-4236.
[15]. Bever, M. and P. Duwez, Gradients in composite materials. Materials Science and Engineering, 1972. 10: p. 1-8.
[16]. Richly, W., Treatise on powder metallurgy, Vol. 4: Classified and annotated bibliography 1950–1960. Cl. G. Goetzel. Part. I: Literature Survey Interscience Publishers, J. Wiley & Sons, New York/London, 1963, 837 S., oa. 16× 24 cm, geb. sh. 300,—. Materials and Corrosion, 1964. 15(10): p. 883-883.
[17]. Markworth, A.J. and J.H. Saunders, A model of structure optimization for a functionally graded material. Materials Letters, 1995. 22(1): p. 103-107.
[18]. Gasik, M.M., Micromechanical modelling of functionally graded materials. Computational Materials Science, 1998. 13(1): p. 42-55.
[19]. Grujicic, M. and Y. Zhang, Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method. Materials Science and Engineering: A, 1998. 251(1): p. 64-76.
[20]. Aboudi, J., M.-J. Pindera, and S.M. Arnold, Higher-order theory for functionally graded materials. Composites Part B: Engineering, 1999. 30(8): p. 777-832.
[21]. Fleck, N. and J. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 1993. 41(12): p. 1825-1857.
[22]. Lam, D., et al., Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 2003. 51(8): p. 1477-1508.
[23]. Kong, S., et al., Static and dynamic analysis of micro beams based on strain gradient elasticity theory. International Journal of Engineering Science, 2009. 47(4): p. 487-498.
[24]. Wang, B., J. Zhao, and S. Zhou, A micro scale Timoshenko beam model based on strain gradient elasticity theory. European Journal of Mechanics-A/Solids, 2010. 29(4): p. 591-599.
[25]. Sahmani, S. and R. Ansari, On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Composite Structures, 2012.
[26]. Hu, Y.-G., et al., Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2008. 56(12): p. 3475-3485.
[27]. Peddieson, J., G.R. Buchanan, and R.P. McNitt, Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 2003. 41(3): p. 305-312.
[28]. Aydogdu, M., A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(9): p. 1651-1655.
[29]. Civalek, Ö. and Ç. Demir, Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Applied Mathematical Modelling, 2011. 35(5): p. 2053-2067.
[30]. Reddy, J., Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 2007. 45(2): p. 288-307.
[31]. Reddy, J. and S. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 2008. 103(2): p. 023511-023511-16.
[32]. Reddy, J., Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science, 2010. 48(11): p. 1507-1518.
[33]. Roque, C., A. Ferreira, and J. Reddy, Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. International Journal of Engineering Science, 2011. 49(9): p. 976-984.
[34]. Wang, Q. and K. Liew, Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures. Physics Letters A, 2007. 363(3): p. 236-242.
[35]. Xia, Y. and P. Yang, Guest editorial: chemistry and physics of nanowires. Advanced Materials, 2003. 15(5): p. 351-352.
[36]. Pradhan, S. and T. Murmu, Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Computational Materials Science, 2009. 47(1): p. 268-274.
[37]. Farajpour, A., et al., Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Composite Structures, 2012. 94(5): p. 1605-1615.
[38]. Assadi, A. and B. Farshi, Stability analysis of graphene based laminated composite sheets under non-uniform inplane loading by nonlocal elasticity. Applied Mathematical Modelling, 2011. 35(9): p. 4541-4549.
[39]. Pradhan, S., Buckling analysis and small scale effect of biaxially compressed graphene sheets using non-local elasticity theory. Sadhana, 2012. 37(4): p. 461-480.
[40]. Samaei, A., S. Abbasion, and M. Mirsayar, Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory. Mechanics Research Communications, 2011. 38(7): p. 481-485.
[41]. Farajpour, A., M. Danesh, and M. Mohammadi, Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics. Physica E: Low-dimensional Systems and Nanostructures, 2011. 44(3): p. 719-727.
[42]. Wang, K. and B. Wang, Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E: Low-dimensional Systems and Nanostructures, 2011. 44(2): p. 448-453.
[43]. Aghababaei, R. and J. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. Journal of Sound and Vibration, 2009. 326(1): p. 277-289.
[44]. Jung, W.-Y. and S.-C. Han, Analysis of Sigmoid Functionally Graded Material (S-FGM) Nanoscale Plates Using the Nonlocal Elasticity Theory. Mathematical Problems in Engineering, 2013. 2013.
[45]. Chen, Y., J.D. Lee, and A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories. International journal of solids and structures, 2004. 41(8): p. 2085-2097.
[46] Pradhan, S. and T. Murmu, Small scale effect on the buckling of single-layered graphene [46]. Bellman, R., B. Kashef, and J. Casti, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. Journal of Computational Physics, 1972. 10(1): p. 40-52.
[47]. Shu, C., Differential Quadrature: And Its Application in Engineering. 2000: Springer.
[48]. Wu, T. and G. Liu, A differential quadrature as a numerical method to solve differential equations. Computational Mechanics, 1999. 24(3): p. 197-205.
[49]. Bert, C.W., S.K. Jang, and A.G. Striz, Two new approximate methods for analyzing free vibration of structural components. AIAA journal, 1988. 26(5): p. 612-618.
[50]. Wang, X. and C. Bert, A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates. Journal of Sound and Vibration, 1993. 162(3): p. 566-572.
[51]. Shu, C. and H. Du, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. International Journal of Solids and Structures, 1997. 34(7): p. 819-835.
[52]. Shu, C. and H. Du, A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates. International Journal of Solids and Structures, 1997. 34(7): p. 837-846.
[53]. Quan, J. and C. Chang, New insights in solving distributed system equations by the quadrature method—I. Analysis. Computers & chemical engineering, 1989. 13(7): p. 779-788.
[54]. Natarajan, S., et al., Size-dependent free flexural vibration behavior of functionally graded nanoplates. Computational Materials Science, 2012. 65: p. 74-80.
[55]. Li, C. and T.-W. Chou, Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach. Mechanics of Materials, 2004. 36(11): p. 1047-1055.