فهرست:
فهرست مطالب
ث
فهرست جدولها
ح
فهرست شکلها
د
فهرست علائم
ر
فصل اول- مقدمه و کلیات تحقیق
1
1-1 میکروکانالها
2
1-2 تغییر خاصیت رئولوژیکی سیال
3
1-3 مواد افزودنی به مایعات
3
1-4 میکروکانالها
4
1-4-1 چکیده
4
1-4-2 تاریخچه میکروکانالها
4
1-4-3 معرفی میکروکانالها
5
1-4-4 طبقهبندی میکروکانالها و مینیکانالها
6
1-4-5 مزایا و چالشهای میکروکانالها
7
1-4-6 روشهای ساخت میکروکانالها
7
1-4-6-1 فناوری متداول
9
1-4-6-1-1 تغییر شکل میکرو
9
1-4-6-1-2 اره کردن میکرو (برشکاری میکرو)
9
1-4-6-2 تکنولوژی مدرن
10
1-4-6-2-1 MEMS (سیستم میکرو الکترومکانیک)
10
1-4-6-2-2 ماشینکاری میکرو لیزر
10
1-4-7 جریان تک فاز در میکروکانالها
10
1-4-8 روابط افت فشار
11
1-4-9 روابط انتقال حرارت
13
1-4-9-1 جریان مغشوش
13
1-4-10 کاربردهای میکروکانالها
13
1-5 سیالات غیر نیوتنی
14
1-5-1 طبقهبندی سیالات غیر نیوتنی
14
1-5-1-1 سیالات غیر نیوتنی مستقل از زمان
15
1-5-1-2 مدل قاعده توانی
16
1-5-1-3 مدل کراس
17
1-5-1-4 مدل کارئو
17
1-5-1-5 مدل الیس
18
1-5-1-6 سیالات غیر نیوتنی تابع زمان
18
1-5-1-7 سیالات ویسکوالاستیک
19
1-6 نانوسیالات
20
1-6-1 مفهوم نانوسیالات
20
1-6-2 مزایای نهان نانوسیال
22
1-6-3 تهیه نانوسیال
24
1-6-4 خواص ترموفیزیکی نانوسیالات
25
1-6-4-1 چگالی
26
1-6-4-2 گرمای ویژه
26
1-6-4-3 لزجت
26
1-6-4-4 ضریب هدایت حرارتی
28
1-6-5 فناوری نانو
34
1-6-6 تولید نانوذرات
35
1-6-6-1 فرآیندهای حالت بخار
36
1-6-6-2 فرآیند حالت مایع و حالت جامد
37
1-6-6-3 تولید نانوذرات با استفاده از روش سیال فوق بحرانی
38
1-6-7 نانولولهها
39
1-6-8 انتقال حرارت جابهجایی در نانوسیالات
39
1-6-8-1 جابهجایی اجباری در نانوسیالات
40
1-6-8-2 مدلهای ریاضی تعیین ضریب انتقال حرارت جابهجایی نانوسیالات
41
1-6-8-3 انتقال حرارت جابهجایی طبیعی
45
1- 7 اغتشاش
45
1-7-1 مقدمه
45
1-7-2 ویژگیهای جریان اغتشاشی سیالات
47
1-7-3 مدلهای اغتشاشی
48
1-7-3-1 مدل k-e
48
1-7-3-2 استفاده از تابع جریان در مدل k-e برای اعداد رینولدز بالا
49
1-7-3-3 مدل k-e در اعداد رینولدز پایین
50
1-7-3-4 مدل RNG
50
1-7-3-5 مدل k-w
51
1-7-3-6 مدل تنش رینولدزی (RSM)
52
فصل دوم- مطالعات آزمایشگاهی، عددی و تئوریک
53
2-1 مقدمه
54
2-2 مطالعات آزمایشگاهی
54
2-3 مطالعات تئوریک
57
2-4 مطالعات عددی
61
فصل سوم- روش تحقیق
64
3-1 مقدمه
65
3-2 تشریح مسئله
65
3-3 تعیین خواص ترموفیزیکی نانوسیال
67
3-4 شبکهبندی و تعیین شرایط مرزی
69
فصل چهارم- نتایج
70
4-1 محاسبه خواص ترموفیزیکی نانوسیال
71
4-2 محاسبه ضریب انتقال حرارت جابهجایی و عدد ناسلت
72
4-3 اعتبار سنجی
75
4-4 محاسبه ضریب انتقال حرارت جابهجایی و عدد ناسلت سیال غیرنیوتنی پایه
76
4-5 تأثیر غلظت نانوذرات بر ضریب انتقال حرارت جابهجایی و عدد ناسلت
78
4-6 تأثیر اندازه نانوذرات بر ضریب انتقال حرارت جابهجایی
83
4-7 تأثیر عدد رینولدز بر ضریب انتقال حرارت جابهجایی نانوسیال و عدد ناسلت
86
فصل پنجم- نتیجهگیری و پیشنهادات
90
5-1 نتیجهگیری
91
5-2 پیشنهادات
91
منابع و مآخذ
93
Abstract
100
منبع:
Barkhordari, M., Etemad, S.Gh./ Numerical study of non-newotonian flow and Heat transfer in circular microchannels/Proceeding of the 4th international conference on computational heat and mass transfer, Paris-Cachan france/2005.
Maxwell, J.C./ Electricity and Magnetism/Clarendon Press, Oxford/UK/1873.
Tuckerman, D.B., Pease, R.F./ High performance heat sinking for VLSI/IEEE Electron Dev. Letts. EDL/ 1981/ p 126–129.
Suo, M., Griffith, P./ Two-phase flow in capillary tubes/ J. Basic Eng/ 1964/ p 576–582.
Mehendale, S.S., Jacobi, A.M., Ahah, R.K./ Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design/ Appl. Mech/ 2000,p 175–193.
Kandlikar, S.G., Garimella, S., Li, D., Colin, S., King, M.R./ Heat Transfer and Fluid Flow in Minichannels and Microchannels/ Elsevier/Amsterdam, 2006.
Palm, B./ Proceedings of Heat Transfer and Transport Phenomena in Microchannel/Heat Transfer in Microchannel, Begell House Inc, Banff/ Canada, 2000.
Nguyen, N.T., Werely, S.T./ Fundamentals and Applications of Microfluidics/ Artech House/Boston/ 2002.
Kukowski, R., /MDT- Micro deforamation Technology/ ASME IMECE/ Washington D.C/ 2003.
Wu, P.Y., Little, W.A. /Measurement of friction factor for the flow of gases in very fine channels used for microminiature Joule Thompson refrigerators/ Cryogenics/ 1983/ p 273–277.
Grigull, U., Tratz, H./ Thermischer einlauf in ausgebildeter laminarer rohrströmung/ Int. J. Heat Mass Transf/ 1965/ p 669–678.
Adams, T.M., Abdel-Khalik, S.I., Jeter, M., Qureshi, Z.H./An experimental investigation of singlephase forced convection in microchannels/ Int. J. Heat Mass Transf/ 1997/ p 851–857.
Maxwell, J.C./ A Treatise on Electricity and Magnetism/ Clarendon Press/ Oxford/ 1873.
Choi, S.U.S./ Enhancing thermal conductivity of fluid with nanoparticles Development and applications of non-Newtonian flows/ ASME, FED/MD 66/ 1995.
Pak, B.C., Cho, Y.I./ Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles/ Exp. Heat Transfer /1998/ p 151-170.
Xuan, Y., Roetzel, W. /Conceptions for Heat Transfer Correlation of Nanofluids/ International Journal of Heat and Mass Transfer/ 2000/ p 3701-3707.
Einstein, A., "A New Determination of the Molecular Dimensions/, Annals of Physics/ 1906/ p 289-306.
Brinkman, H.C./ The Viscosity of Concentrated Suspensions and Solutions/ Journal of Chemical Physics/ 1952/ p 571.
Batchelor, G.K. /The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles/ Journal of Fluid Mechanics/ 1977/ pp 97-117.
Nguyen, C., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., and Angue Mintsa, H. /Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids - Hysteresis Phenomenon/ International Journal of Heat and Fluid Flow/ 2007/ p 1492-1506.
Yu, W., France, D.M., Choi, S.U.S., Routbort, J.L., Systems, E. /Review and Assessment of Nanofluid Technology for Transportation and Other Applications/, Argonne National Laboratory, Energy Systems Division, Argonne/ Illinois/ 2007.
Tseng, W.J., Lin, K./ Rheology and Colloidal Structure of Aqueous TiO2Nanoparticle Suspensions/ Materials Science and Engineering/2003/ p 186-192.
Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G. /Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube/ Superlattices and Microstructures/2004/ p 543-557.
Koo, J., Kleinstreuer, C. /A New Thermal Conductivity Model for Nanofluids/ Journal of Nanoparticle Research/ 2004/ p 577-588.
Kulkarni, D,P., Das, D.K., Chukwu, G.A. /Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)/ Journal of Nanoscience and Nanotechnology/ 2006/ p 1150-1154.
Ozerinc, S., Kakac, S., Yazicioglu, A.G./ Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review/ Microfluid. Nanofluid/ 2010/ p 145-170.
Hamilton, R.L., Crosser, O.K. /Thermal Conductivity of Heterogeneous Two-Component Systems/ Industrial and Engineering Chemistry Fundamentals/ 1962/p 187-191.
Bhattacharya, P., Saha, S.K., Yadav, A., Phelan, P.E., Prasher, R.S. /Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids/ Journal of Applied Physics/ 2004/p 6492-6494.
Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S. /Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement/ Applied Physics Letters/2005.
Einstein, A. /Investigation on the Theory of Brownian Movement/ Dover/ New York/ 1956.
Evans, W., Fish, J., Keblinski, P. /Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity/ Applied Physics Letters/ 2006/ 093116-3.
Bruggeman, D.A.G. /The Calculation of Various Physical Constants of Heterogeneous Substances. I, The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances/ Annals of Physics/ 1935/ p 636-664.
Nan, C., Birringer, R., Clarke, D.R., Gleiter, H., /Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance/ Journal of Applied Physics/ 1997/p 6692-6699.
Prasher, R., Phelan, P.E., Bhattacharya, P. /Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)/ Nano Letters / 2006/ p 1529-1534.
Xuan, Y., Li, Q., Hu, W. /Aggregation Structure and Thermal Conductivity of Nanofluids/ American Institute of Chemical Engineers Journal/2003/ pp 1038-1043.
Li, Q., Xuan, Y. /Experimental Investigation on Transport Properties of Nanofluids/ Heat Transfer Science and Technology 2000, B. Wang, ed, Higher Education Press, Beijing/ 2000/ p 757–762.
Li, Y., Qu, W., Feng, J. /Temperature Dependence of Thermal Conductivity of Nanofluids/ Chinese Physics Letters/2008/ p 3319-3322.
Chen, G. /Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles/ Journal of Heat Transfer/1996/p 539-545.
Incropera, F.P., Dewitt, D.P./ Fundamentals of heat and mass transfer/ John Wiley & sons/ New York/ 1996.
Xuan, Y., Li, Q./Investigation on convective heat transfer and flow features of nanofluids/ J.Heat Transfer/ 2005/ p 151.
Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B., Wu, G./heat transfer properties of nanoparticle in fluid dospersions (nanofluids) in laminar flow/ Int. J. Heat Mass Transfer/ 2005/p 1107.
Wen, D., Ding, Y./Experimental investigation into convective heat transfer of nanofluids at entrance region under laminar flow conditions/Int. J. Heat Mass Transfer/ 2004/p 5181.
Xuan, Y., Roetzel, W./Conception for heat transfer correlation of nanofluids/ Int. Heat Mass Transfer/ 2000/ p 3701.
Li, Q., Xung, Y./Convective heat transfer and flow characteristics of Cu-water nanofluid/Scince in China, Series E/ 2002/ p 408.
Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N./Heat transfer enhancement by using nanofluids in forced convection flows/ Int.J. Heat Fluid/ 2005/ p 530.
Khanafer, K., Vafai, K., Lightstone, M./Bouyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids/ International Journal of Heat and Mass Transfer/ 2003/ p 3639.
Mirmasoumi, S., Behzadmehr, A./Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube/International Journal of Heat and Fluid Flow/2008/ p 557–566.
Pak, B.C., Cho, Y.I./Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles/Experimental Heat Transfer/ 1998/p 151-170.
Li, Q., Xuan, Y./Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid/Science in China,Series E/2002/p 408-416.
Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A.A., and Bavykin, D.V./Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)/ Powder Technology/ 2008/ p 63-72.
Wen, D., Ding, Y./Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions/International Journal of Heat and Mass Transfer/2004/p 5181-5188.
Hwang, K.S., Jang, S.P., Choi, S.U.S./Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3Nanofluids in Fully Developed Laminar Flow Regime/International Journal of Heat and Mass Transfer/ 2009/p 193-199.
Heris, S.Z., Etemad, S., Esfahany, M.N./Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer/ International Communications in Heat and Mass Transfer/2006/p 529-535.
Duangthongsuk, W., Wongwises, S./Heat transfer enhancement and pressure drop characteristics of TiO2/water nanofluid in a double-tube counter flow heat exchanger/International Journal of Heat and Mass Transfer/2009/p 2059-2067.
Hojjat, M., Etemad, S.GH., Bagheri, R.,Thibault, J./Turbulent forced convection heat transfer of non-Newtonian nanofluids/Experimental Thermal and Fluid Science/ 2011/p 1351-1356.
Fotukian, S.M., Nasr Esfahany, M./Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO water nanofluid inside a circular tube/ International Communications in Heat and Mass Transfer/2010/p 214–219.
Esfe Mohammad, H., Saedodin, S., Mahmoodi, M./Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow/Experimental Thermal and Fluid Science/2014/p 68–78.
Hatami, M., Ganji, D.D./Heat transfer and flow analysis for SA-TiO2 non-Newtonian nanofluid passing through the porous media between two coaxial cylinders/ Journal of Molecular Liquids/2013/p 155–161.
Vafaei, S., Wen, D./Convective heat transfer of Alumina nanofluids in a microchannel/IHTC/2012.
Corcione, M., Cianfrini M., Quintino, A./Heat transfer of nanofluids in turbulent pipe flow/International Journal of Thermal Sciences/2012/p 58-69.
Xuan, Y., Roetzel, W./Conceptions for Heat Transfer Correlation of Nanofluids/International Journal of Heat and Mass Transfer/2000/p 3701-3707.
Li, Q., Xuan, Y./Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid/Science in China, Series E/2002/p 408-416.
Ding, Y., Wen, D./Particle Migration in a Flow of Nanoparticle Suspensions/ Powder Technology/2005/p 84-92.
Buongiorno, J./Convective Transport in Nanofluids/ Journal of Heat Transfer/ 2006/p 240-250.
Hwang, K.S., Jang, S.P., Choi, S.U.S./Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime/International Journal of Heat and Mass Transfer/ 2009/p 193-199.
Mansour, R.B., Galanis, N., Nguyen, C.T./Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer with Nanofluids/Applied Thermal Engineering/2007/p 240-249.
Lotfi, R., Saboohi, Y., Rashidi, A.M./Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches/International Communications in Heat and Mass Transfer/2010/p 74–78.
Praveen, K., Namburu, Debendra, K., Das, Krishna, M., Tanguturi, Ravikanth, S., Vajjha/Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties/International Journal of Thermal Sciences, / 2009/pp 290–302.
Heidary, H., Kermani, M.J./Effect of nano-particles on forced convection in sinusoidal-wall channel/ International Communications in Heat and Mass Transfer, /2010/p 1520–1527.
Mirmasoumi, S., Behzadmehr, A./Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube", International Journal of Heat and Fluid Flow/2008/p 557–566.
Akbari, M., Behzadmehr, A., Shahraki, F./Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid/International Journal of Heat and Fluid Flow/2008/p 545–556.
Akbari, M., Galanis, N., Behzadmehr, A./Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection/ International Journal of Heat and Fluid Flow/ 2012/p 136–146.
Ghaffari, O., Behzadmehr, A., Ajam, H./Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach/International Communications in Heat and Mass Transfer/ 2010/p 1551–1558.
Shariat, Mohammad., Akbarinia, A., Hossein Nezhad, A., Behzadmehr, A., Laur, R./Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts/Applied Thermal Engineering/2011/p 2348-2359.
Rostamani, M., Hosseinizadeh, S.F., Gorji, M., Khodadadi, J.M./Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties/ International Communications in Heat and Mass Transfer/2010/p 1426–1431.
Esmaeilnejad, A., Aminfar, H., Shafiee Neistanak, M./Numerica investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids/International Journal of Thermal Sciences/2014/p 76-86.
Keshavarz, Moraveji, M., Haddad, S.M.H., Darabi, M./Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics/International Communications in Heat and Mass Transfer/2012/p 995–999.
Kalteh, M., Abbassi, A., Saffar-Avval, M., Harting Jens/Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel/ International Journal of Heat and Fluid Flow/2011/p 107–116.
Manca, O., Nardini, S., Ricci, D./A numerical study of nanofluid forced convection in ribbed channels/Applied Thermal Engineering/2012/p 280-292.
Hojjat, M., Etemad, S.Gh., Bagheri, R., Thibault, J./Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube/International Journal of Thermal Sciences/ 2011/p 525-531.
Salman, B.H., Mohammed, H.A., Munisamy, K.M., Kherbeet, A.Sh./Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids/ Renewable and Sustainable Energy Reviews/2013/p 848–880.
Salma, Halelfadl., Ahmed Mohammed, A., Normah, M.G., Thierry, M., Patrice, E., Robiah, A./Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid/Applied Thermal Engineering/2014/p 492-499.
Hojjat, M., Etemad, S.Gh., Bagheri, R., Thibault, J./Turbulent forced convection heat transfer of non-Newtonian nanofluids/Experimental Thermal and Fluid Science/2011/p 1351–1356.
Hojjat, M., Etemad, S.Gh., Thibault, J./Rheological characteristics of non- Newtonian nanofluids: Experimental investigation/ International Communications in Heat and Mass Transfer/2011/p 144–148.
Yarin, L.P., Mosyak, A., Hetsroni, G./Fluid Flow, Heat Transfer and Boiling in Micro-Channels/ Springer,Verlag Berlin Heidelberg/ 2009.
Bianco, V., Manca, O., Nardini, S./Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube/International Journal of Thermal Sciences/2011/p 341-349.
Kandlikar, S., Garimella, S., Li, D., Colin, S., R King, M./Heat Transfer and Fluid Flow in Minichannels and Microchannels/Elsevier/ USA/ 2006.
Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E./Next Generation Microchannel Heat Exchangers / Springer/ New York Heidelberg Dordrecht London/ 2013.
Tuckerman, D.B., Pease, R.F./High performance heat sinking for VLSI/ IEEE Electron. Dev.Letts. EDL-2/1981/p 126–129.
Gnielinski, V./New equations for heat and mass transfer in turbulent pipe and channel flow/Int.Chem. Eng/1976/p 359–368.