فهرست:
1-فصل اول : مقدمه 1
1-1-سیستمهای میکرو و نانو الکترومکانیکی 1
1-1-1- سوییچهای الکترواستاتیک... 5
1-1-1-1-مزایا و معایب میکرو و نانوسوییچها 6
1-1-2-سیستمهای میکرو و نانو الکترومکانیکی در شناسایی ذره خارجی 9
1-1-3- تئوریهای کلاسیک و غیر موضعی.. 10
1-1-4-فصلبندی پژوهش... 11
1-2-مفاهیم پایه و اصلی 13
1-2-1-تحریک الکترواستاتیک در میدان الکتریکی 13
1-2-2-نیروی بین ملکولی واندروالس 16
1-2-2-1-مقدمه 16
1-2-2-2-تعامل نیروی واندروالس و الکترواستاتیک در نانوسوییچ.. 17
1-2-3-تئوری تنش غیرمحلی.. 18
1-2-4-حسگر جرمی.. 20
1-3-مروری بر ادبیات و تاریخچه موضوع تحقیق 22
1-3-1-مروری بر تاریخچه مدلسازی و طراحی میکرو/نانوسوییچهای کربنی 22
1-3-2- مروری بر روشهای حل عددی و تحلیلی میکرو/نانو تیرهای تحریکشده با میدان الکتریکی 25
1-3-3-پیشرفتهای انجام شده در زمینه سنسورها 29
1-3-4-اهداف پژوهش و سازماندهی.. 32
2-فصل دوم : مدلسازی مسأله. 34
2-1-استخراج معادله حاکم بر مسأله 34
2-2-استخراج شرایط مرزی 38
2-2-1-سوییچ یکسرگیردار 38
2-3- بیبعدسازی معادلات.. 40
2-4-بسط تیلورنیروهای غیر خطی 41
2-5-حل خطی مسأله. 41
2-6-تاثیر ولتاژ روی فرکانس طبیعی تیر 43
3-فصل سوم : تحلیل استاتیکی و دینامیکی سیستم.. 46
3-1-تحلیل استاتیکی 46
3-1-1-روش حل معادلات مقدار مرزی در متلب 47
3-1-2-نتایج و نمودارهای تحلیل استاتیک 48
3-2-تحلیل دینامیکی 59
3-2-1- مقدمه. 59
3-2-2-استخراج معادله خطی و همگن برای ارتعاش آزاد. 60
3-2-3-حل ارتعاش آزاد مسأله. 62
3-2-3-1-شرایط مرزی طبیعی در 64
3-2-4-روش گالرکین، و حذف وابستگی به مکان در مسئله 66
3-2-5-حل عددی معادله دیفرانسیل غیرخطی وابسته به زمان 68
3-2-6-نمودار ها و نتایج تحلیل دینامیک 69
4-فصل چهارم : بررسی ناپایداری سیستم با حضور ذره جرمی محرک... 77
4-1-مقدمه 77
4-1-1-ارتعاش سازهها تحت بار یا ذره محرک 77
4-1-2-نانو ذره محرک در سیستمهای نانو الکترومکانیک 78
4-2-فرضیات لازم جهت مدلسازی مسأله 79
4-3-فرموله کردن مسأله 80
4-3-1-معرفی پارامترهای بدون بعد ذره 82
4-4-نتایج عددی و بحثها 83
5-فصل پنجم : ناپایداری استاتیکی غیرخطی غیرمحلی نانوسوییچ نیترید-بور. 88
5-1- مقدمه. 88
5-2-نانوسوییچ نیترید-بور 89
5-3-مدلسازی نانوسوییچ 90
5-3-1-راوابط کرنش-جابجایی.. 90
5-3-2-مواد پیزوالکتریک... 90
5-3-3- نیرویهای خارجی.. 91
5-3-4-تئوری پیزوالاستسیته غیرمحلی.. 92
5-4-معادلات حاکم 92
5-5-روش حل و نتایج عددی 95
5-5-1-روش مربعسازی دیفرانسیلی.. 95
5-5-2-نتایج عددی و بحثها 97
6-فصل ششم : نتیجهگیری و پیشنهادها 101
6-1-نتیجهگیری 101
6-1-1-لزوم تحلیل و سازماندهی پژوهش 101
6-1-2-نتایج تحلیل و بررسی پژوهش 102
6-2-پیشنهادها برای کارهای بعدی 105
پیوست 106
الف- تعریف دستور روش bvp4c در متلب.. 106
مراجع 108
منبع:
[1]. Maluf, N. and K. Williams, An Introduction to Microelectromechanical Systems Engineering 2nd Ed2004: Artech House.
[2]. Elwenspoek, M. and R. Wiegerink, Mechanical microsensors, 2001, IOP Publishing.
[3]. Younis, M.I., Microsystems: Mems Linear and Nonlinear Statics and Dynamics. Vol. 20. 2010: Springer.
[4]. www.sensata.com, (Sensata Technologies; Attleboro, MA).
[5]. Pelesko, J.A. and D.H. Bernstein, Modeling Mems and Nems2002: CRC press.
[6]. Lee, S., et al., Carbon-nanotube based nano electromechanical switches. J Korean Phys Soc, 2009. 55: p. 957-961.
[7]. Loh, O., et al., Arrays of Robust Carbon Nanotube-Based NEMS: A Combined Experimental/Computational Investigation, in MEMS and Nanotechnology, Volume 22011, Springer. p. 81-82.
[8]. Alsaleem, F.M., Dynamics of Hybrid MEMS Sensors and Switches for Mass and Acceleration Detection2009: ProQuest.
[9]. Magrab, E.B., Vibrations of Elastic Systems: With Applications to MEMS and NEMS. Vol. 184. 2012: Springer.
[10]. Batra, R., M. Porfiri, and D. Spinello, Vibrations of narrow microbeams predeformed by an electric field. Journal of Sound and Vibration, 2008. 309(3): p. 600-612.
[11]. Zhou, S.-A., On forces in microelectromechanical systems. International Journal of Engineering Science, 2003. 41(3): p. 313-335.
[12]. Lennard-Jones, J., Perturbation problems in quantum mechanics. Proceedings of the Royal Society of London. Series A, 1930. 129(811): p. 598-615.
[13]. Israelachvili, J.N., Intermolecular and surface forces: revised third edition2011: Academic press.
[14]. Dequesnes, M., S. Rotkin, and N. Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology, 2002. 13(1): p. 120.
[15]. Rotkin, S.V. Analytical calculations for nanoscale electromechanical systems. in Electrochem Soc Proc. 2002.
[16]. Eringen, A.C., Nonlocal continuum field theories2002: Springer.
[17]. Polizzotto, C., Nonlocal elasticity and related variational principles. International Journal of Solids and Structures, 2001. 38(42): p. 7359-7380.
[18]. Rueckes, T., et al., Carbon nanotube-based nonvolatile random access memory for molecular computing. science, 2000. 289(5476): p. 94-97.
[19]. Kim, P. and C.M. Lieber, Nanotube nanotweezers. science, 1999. 286(5447): p. 2148-2150.
[20]. Zhu, Y., C. Ke, and H. Espinosa, Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Experimental Mechanics, 2007. 47(1): p. 7-24.
[21]. Aluru, N., Static and dynamic analysis of carbon nanotube-based switches. Urbana, 2004. 51: p. 61801.
[22]. Elata, D., On the static and dynamic response of electrostatic actuators. TECHNICAL SCIENCES, 2005. 53(4).
[23]. Ramezani, A., A. Alasty, and J. Akbari, Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. International journal of solids and structures, 2007. 44(14): p. 4925-4941.
[24]. Hierold, C., From micro-to nanosystems: mechanical sensors go nano. Journal of Micromechanics and Microengineering, 2004. 14(9): p. S1.
[25]. Li, C.-Y. and T.-W. Chou, Strain and pressure sensing using single-walled carbon nanotubes. Nanotechnology, 2004. 15(11): p. 1493.
[26]. Pamidighantam, S., et al., Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. Journal of Micromechanics and Microengineering, 2002. 12(4): p. 458.
[27]. Lin, W.-H. and Y.-P. Zhao, Casimir effect on the pull-in parameters of nanometer switches. Microsystem technologies, 2005. 11(2-3): p. 80-85.
[28]. Dequesnes, M., S.V. Rotkin, and N.R. Aluru, Parameterization of continuum theories for single wall carbon nanotube switches by molecular dynamics simulations. Journal of Computational Electronics, 2002. 1(3): p. 313-316.
[29]. Gu, Y. and L. Zhang. Deformation characterization of a nanoelectromechanical switch. in Journal of Physics: Conference Series. 2006. IOP Publishing.
[30]. Li, Z., et al., Nonlinear analysis of a SWCNT over a bundle of nanotubes. International journal of solids and structures, 2004. 41(24): p. 6925-6936.
[31]. Ijntema, D.J. and H.A. Tilmans, Static and dynamic aspects of an air-gap capacitor. Sensors and Actuators A: Physical, 1992. 35(2): p. 121-128.
[32]. Tilmans, H.A. and R. Legtenberg, Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance. Sensors and Actuators A: Physical, 1994. 45(1): p. 67-84.
[33]. König, E.-R. and G. Wachutka, Multi-parameter homotopy for the numerical analysis of MEMS. Sensors and Actuators A: Physical, 2004. 110(1): p. 39-51.
[34]. Kuang, J.-H. and C.-J. Chen, Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. Journal of Micromechanics and Microengineering, 2004. 14(4): p. 647.
[35]. Moghimi Zand, M. and M. Ahmadian, Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics. International Journal of Mechanical Sciences, 2007. 49(11): p. 1226-1237.
[36]. Zhang, Y. and Y.-p. Zhao, Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensors and Actuators A: Physical, 2006. 127(2): p. 366-380.
[37]. Hu, Y.-C., Closed form solutions for the pull-in voltage of micro curled beams subjected to electrostatic loads. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 648.
[38]. Younis, M. and A. Nayfeh, A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics, 2003. 31(1): p. 91-117.
[39]. Ramezani, A., A. Alasty, and J. Akbari, Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators. Microsystem technologies, 2006. 12(12): p. 1153-1161.
[40]. Ramezani, A., A. Alasty, and J. Akbari, Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force. Nonlinear Analysis: Hybrid Systems, 2007. 1(3): p. 364-382.
[41]. Zhao, X., E.M. Abdel-Rahman, and A.H. Nayfeh, A reduced-order model for electrically actuated microplates. Journal of Micromechanics and Microengineering, 2004. 14(7): p. 900.
[42]. Nayfeh, A.H., M.I. Younis, and E.M. Abdel-Rahman, Reduced-order models for MEMS applications. Nonlinear Dynamics, 2005. 41(1-3): p. 211-236.
[43]. Abdel-Rahman, E.M., M.I. Younis, and A.H. Nayfeh, Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, 2002. 12(6): p. 759.
[44]. Mojahedi, M., M. Moghimi Zand, and M. Ahmadian, Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. Applied Mathematical Modelling, 2010. 34(4): p. 1032-1041.
[45]. Younis, M.I., Modeling and simulation of microelectromechanical systems in multi-physics fields, 2004, Citeseer.
[46]. Nayfeh, A.H. and M.I. Younis, A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. Journal of Micromechanics and Microengineering, 2004. 14(2): p. 170.
[47]. Moghimi Zand, M., M. Ahmadian, and B. Rashidian, Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages. Journal of Sound and Vibration, 2009. 325(1): p. 382-396.
[48]. Batra, R., M. Porfiri, and D. Spinello, Effects of Casimir force on pull-in instability in micromembranes. EPL (Europhysics Letters), 2007. 77(2): p. 20010.
[49]. Batra, R., M. Porfiri, and D. Spinello, Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. International journal of solids and structures, 2008. 45(11): p. 3558-3583.
[50]. Batra, R.C., M. Porfiri, and D. Spinello, Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors, 2008. 8(2): p. 1048-1069.
[51]. Teva, J., et al., A femtogram resolution mass sensor platform based on SOI electrostatically driven resonant cantilever. Part II: Sensor calibration and glycerine evaporation rate measurement. Ultramicroscopy, 2006. 106(8): p. 808-814.
[52]. Battiston, F., et al., A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sensors and Actuators B: Chemical, 2001. 77(1): p. 122-131.
[53]. Villarroya, M., et al., System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sensors and Actuators A: Physical, 2006. 132(1): p. 154-164.
[54]. Kim, S.-J., T. Ono, and M. Esashi, Capacitive resonant mass sensor with frequency demodulation detection based on resonant circuit. Applied physics letters, 2006. 88(5): p. 053116-053116-3.
[55]. Ekinci, K., X. Huang, and M. Roukes, Ultrasensitive nanoelectromechanical mass detection. Applied physics letters, 2004. 84(22): p. 4469-4471.
[56]. Burg, T.P., et al., Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Microelectromechanical Systems, Journal of, 2006. 15(6): p. 1466-1476.
[57]. Voiculescu, I., et al., Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons. Sensors Journal, IEEE, 2005. 5(4): p. 641-647.
[58]. Lochon, F., et al., Silicon made resonant microcantilever: Dependence of the chemical sensing performances on the sensitive coating thickness. Materials Science and Engineering: C, 2006. 26(2): p. 348-353.
[59]. Ghatkesar, M.K., et al., Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. Nanotechnology, 2007. 18(44): p. 445502.
[60]. Sharos, L., et al., Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Applied physics letters, 2004. 84(23): p. 4638-4640.
[61]. Tseytlin, Y.M., High resonant mass sensor evaluation: An effective method. Review of scientific instruments, 2005. 76(11): p. 115101-115101-6.
[62]. Sinha, N., J. Ma, and J.T. Yeow, Carbon nanotube-based sensors. Journal of nanoscience and nanotechnology, 2006. 6(3): p. 573-590.
[63]. Nayfeh, A.H. and P.F. Pai, Linear and nonlinear structural mechanics2008: Wiley. com.
[64]. Shampine, L.F., I. Gladwell, and S. Thompson, Solving ODEs with MATLAB2003: Cambridge University Press.
[65]. Rao, S.S., Vibration of continuous systems2007: John Wiley & Sons.
[66]. Fryba, L. and L. Frýba, Vibration of solids and structures under moving loads1999: Thomas Telford.
[67]. Kiani, K., Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Physica E: Low-dimensional Systems and Nanostructures, 2010. 42(9): p. 2391-2401.
[68]. Kiani, K. and B. Mehri, Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. Journal of Sound and Vibration, 2010. 329(11): p. 2241-2264.
[69]. Şimşek, M., Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures, 2010. 43(1): p. 182-191.
[70]. Yan, T. and J. Yang, Forced Vibration of Edge-Cracked Functionally Graded Beams Due to a Transverse Moving Load. Procedia Engineering, 2011. 14: p. 3293-3300.
[71]. Oh, E.-S., Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Materials Letters, 2010. 64(7): p. 859-862.
[72]. Song, J., et al., Deformation and bifurcation analysis of boron-nitride nanotubes. International journal of mechanical sciences, 2006. 48(11): p. 1197-1207.
[73]. Shu, C., Differential quadrature and its applications in engineering. 2000: Springer.
[74]. Yang, J., X. Jia, and S. Kitipornchai, Pull-in instability of nano-switches using nonlocal elasticity theory. Journal of Physics D: Applied Physics, 2008. 41(3): p. 035103.