فهرست:
فهرست مطالب.. هشت
فهرست شکلها دوازده
فهرست جدولها هفده
فهرست علائم اختصاری.. هجده
علائم یونانی.. بیست
پانویس ها بیستویک
چکیده 1
فصل اول : مقدمه
1-1-مقدمهای بر لوله ورتکس 2
1-2-برخی از کاربردهای لوله ورتکس 3
1-2-1-کاربردهای خنک ساز موضعی.. 4
1-2-2-کاربردهای گرما ساز موضعی.. 5
1-2-3-تجهیزات آزمایشگاهی لوله ورتکس... 6
1-2-4-تهویه مطبوع شخصی.. 6
1-3-نظریههای رایج در مورد لوله ورتکس... 7
1-4-تحلیل نظری لوله ورتکس... 7
1-4-1-تحلیل ترمودینامیکی سیستم لوله ورتکس... 7
1-4-1-1-قانون بقای جرم. 8
1-4-1-2-قانون اول ترمودینامیک... 8
1-4-1-3-قانون دوم ترمودینامیک... 9
1-4-2-راندمانهای سیستم لوله ورتکس[2] 12
1-4-2-1-راندمانهای گرمایی برای سیستم لوله ورتکس... 12
1-4-2-2-راندمان برای یک انبساط ایزنتروپیک کامل. 13
1-4-2-3-راندمان کارنو. 13
هشت
1-4-2-4-معیاری بر مبنای سیکل کارنو. 14
1-5-پژوهش پیش روی 14
فصل دوم : ادبیات تحقیق
2-1-مقدمه. 15
2-2-مطالعات تجربی 16
2-2-1-سیال عامل. 16
2-2-2-هندسه. 16
2-2-3-میدان جریان داخلی.. 20
2-2-3-1-آشکارسازی جریان. 20
2-2-3-2-توزیعهای سرعت در داخل لوله ورتکس... 21
2-2-3-3-اثبات تجربی جریان گردشی ثانویه. 22
2-3-توسعه تئوری 25
2-3-1-انتقال حرارت اصطکاکی.. 25
2-4-مدل جریان صوتی در لوله ورتکس... 27
2-5-مطالعات دینامیک سیالات محاسباتی.. 29
فصل سوم : معادلات حاکم
3-1-مقدمه. 33
3-2-تاریخچه CFD.. 34
3-3-کاربردهای CFD.. 34
3-4-معادلات ناویر استوکس... 34
3-5-معادلات حاکم در بخش دینامیک سیالات محاسباتی.. 35
3-5-1-مدل ..... 36
3-5-2-مدل ...... 40
3-5-3-مدل ............... 41
3-6-شرایط مرزی.. 43
فصل چهارم : نتایج
4-1-مقدمه. 44
4-2-بررسی تجربی 44
4-2-1-نتایج بررسی تجربی.. 47
4-2-2-اندازهگیری خطا 48
نه
4-2-3-منابع خطا 48
4-2-3-1-خطای شخص 48
4-2-3-2-خطای دستگاه 48
4-2-3-3-خطای منظم (سیستماتیک) 48
4-2-3-4-خطای کاتوره ای(نامنظم) 48
4-2-4-خطای مطلق. 48
4-2-4-1-عدم قطعیت و آنالیز خطا 48
4-3-شبیهسازی دینامیک سیالات محاسباتی.. 53
4-3-1-روش بکار گرفتهشده 53
4-3-2-استفاده از نتایج تجربی.. 54
4-3-3-مدل دینامیک سیالات محاسباتی لوله ورتکس... 54
4-3-4-شرایط مرزی.. 59
4-3-4-1-ورودی نازلها 59
4-3-4-2-خروجی سرد. 59
4-3-4-3-خروجی گرم. 59
4-3-5-مطالعه استقلال از شبکه. 60
4-3-6-انطباق شبکه. 62
4-3-7-نتایج عملکرد مدل های توربولانسی.. 63
4-3-7-1-کانتورهای دما 66
4-3-7-2-توزیع های سرعت مماسی ،و محوری .... 72
4-3-7-3-کانتور چگالی.. 73
4-3-7-4-کانتورهای عدد ماخ. 74
4-3-7-5-نمایش خطوط جریان. 76
4-3-8-خطای شبیه سازی.. 79
4-3-9-نمودار باقیمانده 80
4-3-10-عملکرد شبکه با ساختار نامنظم. 82
فصل پنجم: نتیجه گیری و پیشنهادها
5-1-نتیجهگیری.. 85
5-2-پیشنهادها 86
پیوست... 88
ده
گسسته سازی معادلات CFD حاکم. 88
رویکرد حل در نرمافزار Ansys CFX 14.5. 91
فرایند انطباق شبکه[52] 92
روششناسی CFD.. 94
ایجاد هندسه و شبکه. 94
تعریف فیزیک مدل. 94
حل مسئله. 94
باقیماندهها 95
نمایش نتایج در پس پردازنده 95
مراجع.. 96
منبع:
[1] C. Fulton, "Ranque’s tube," J Refrig Eng, vol. 5, pp. 473-479, 1950.
[2] C. Gao, "Experimental Study on the Ranque-Hilsch Vortex Tube," Technische Universiteit Eindhoven, 2005.
[3] Exair, "Vortex Tubes and Spot Cooling Products," www.Exair.com.
[4] P. A. H. Ltd., "Refrigeration," www.p-a-hilton.co.uk.
[5] I. A. Managment, "Vortec Air Guns," www.vortc.com.
[6] B. Ahlborn and S. Groves, "Secondary flow in a vortex tube," Fluid Dynamics Research, vol. 21, p. 73, 1997.
[7] B. Ahlborn, J. Keller, and E. Rebhan, "The heat pump in a vortex tube," Journal of Non-Equilibrium Thermodynamics, vol. 23, pp. 159-165, 1998.
[8] B. K. Ahlborn and J. M. Gordon, "The vortex tube as a classic thermodynamic refrigeration cycle," Journal of Applied Physics, vol. 88, pp. 3645-3653, 2000.
[9] C. Gao, K. J. Bosschaart, J. Zeegers, and A. De Waele, "Experimental study on a simple Ranque–Hilsch vortex tube," Cryogenics, vol. 45, pp. 173-183, 2005.
[10] P. P. S. A.T.A.M de Waele, and J.Gijzen, "Thermodynamical aspects of pulse tubes," Cryogenics, vol. 37, pp. 313-324, 1997.
[11] T. T. Cockeril, "Fluid Mechnics and Thermodynamics of a Ranque-Hilsch," MSc, University of Cambridge, 1995.
[12] C. U. Linderstrom-Lang, "on Gas separation in Ranque-Hilsch vortex tubes," Z.Naturforschg, vol. 22, pp. 835- 837, April 1967.
[13] J.Marshall., "Effect of operating conditions, physical size and fluid characteristics on the gas separation performance of a Linderstrom-Lang vortex tube," International Journal of Heat and Mass Transfer, vol. 20, pp. 227-231, 1977.
[14] H. Takahama, H. Kawamura, S. Kato, and H. Yokosawa, "Performance characteristics of energy separation in a steam-operated vortex tube," International Journal of Engineering Science, vol. 17, pp. 735-744, 1979.
[15] R. L. Collins and R. B. lovelace, "Experimental study of two-phase propane expanded through the Ranque -Hilsch tube," Trans. ASME, J.Heat Transfer, vol. 101, pp. 300-305, may 1979.
[16] R. T. Balmer, "Pressure -driven Ranque -Hilsch temperature separation in liquids," Trans. ASME, J.Fluids Engineering, vol. 110, pp. 161-164, June 1988.
[17] M. Saidi and M. Valipour, "Experimental modeling of vortex tube refrigerator," Applied thermal engineering, vol. 23, pp. 1971-1980, 2003.
[18] N. V. Poshernev I. L. Khodorkov, "Natural -gas tests on aconical vortex tube (CVT)wi th external cooling.," Chemical and Petroleum Engineering, vol. 40, pp. 212-217, 2004.
[19] K. Polat and V. Kırmacı, "Determining of gas type in counter flow vortex tube using pairwise fisher score attribute reduction method," International Journal of Refrigeration, vol. 34, pp. 1372-1386, 2011.
[20] G. J. Ranque, "METHOD AND APPARATUS FOR OBTAINING," ed: Google Patents, 1934.
[21] R. Hilsch, "The use of the expansion of gases in a centrifugal field as cooling process," Review of Scientific Instruments, vol. 18, pp. 108-113, 2004.
[22] H. Takahama and H. Yokosawa, "Energy separation in vortex tubes with a divergent chamber," Journal of Heat Transfer, vol. 103, pp. 196-203, 1981.
[23] A. Gulyaev, "Investigation of conical vortex tubes," Journal of Engineering Physics and Thermophysics, vol. 10, pp. 193-195, 1966.
[24] S. A. Piralishvili and V. Polyaev, "Flow and thermodynamic characteristics of energy separation in a double-circuit vortex tube—an experimental investigation," Experimental thermal and fluid science, vol. 12, pp. 399-410, 1996.
[25] R. W. James.and S. A. Marshall, "Vortex tube refrigeration," Refrigeration and air conditioning, pp. 69-88, 1972.
[26] M. Kurosaka, "Acoustic streaming in swirling flow and the Ranque—Hilsch (vortex-tube) effect," Journal of Fluid Mechanics, vol. 124, pp. 139-172, 1982.
[27] D. Guillaume and J. Jolly III, "Demonstrating the achievement of lower temperatures with two-stage vortex tubes," Review of Scientific Instruments, vol. 72, pp. 3446-3448, 2001.
[28] K. Dincer, S. Baskaya, B. Uysal, and I. Ucgul, "Experimental investigation of the performance of a Ranque–Hilsch vortex tube with regard to a plug located at the hot outlet," International journal of refrigeration, vol. 32, pp. 87-94, 2009.
[29] O. Aydın, B. Markal, and M. Avcı, "A new vortex generator geometry for a counter-flow Ranque–Hilsch vortex tube," Applied Thermal Engineering, vol. 30, pp. 2505-2511, 2010.
[30] Y. Xue, M. Arjomandi, and R. Kelso, "Experimental study of the flow structure in a counter flow Ranque–Hilsch vortex tube," International Journal of Heat and Mass Transfer, vol. 55, pp. 5853-5860, 2012.
[31] R. M. Jr, "Fluid action in the vortex tube," ASRE Refrigeratin Engineering, vol. 58, pp. 974-975, 1950.
[32] J.E.Lay, " An experimental and analytical study of vortex -flow temperature separation by
superposition of spiral and axial flow, par t I I," Tra ns . ASME J. Heat Transfer, vol. 81, pp. 213-222, 1959.
[33] M. Sibulkin, "Unsteady, viscous, circular flow part 3. application to the Ranque-Hilsch vortex tube," Journal of Fluid Mechanics, vol. 12, pp. 269-293, 1962.
[34] J. Smith, "An experimental study of the vortex in the cyclone separator," Journal of Basic Engineering, vol. 84, pp. 602-608, 1962.
[35] H. Bruun, "Experimental investigation of the energy separation in vortex tubes," Journal of Mechanical Engineering Science, vol. 11, pp. 567-582, 1969.
[36] A. Gutsol, "The ranque effect," Physics-Uspekhi, vol. 40, pp. 639-658, 1997.
[37] A. Leont'ev, "Gas-dynamic methods of temperature stratification (a review)," Fluid dynamics, vol. 37, pp. 512-529, 2002.
[38] J. Lewins and A. Bejan, "Vortex tube optimization theory," Energy, vol. 24, pp. 931-943, 1999.
[39] W. Fröhlingsdorf and H. Unger, "Numerical investigations of the compressible flow and the energy separation in the Ranque–Hilsch vortex tube," International Journal of Heat and Mass Transfer, vol. 42, pp. 415-422, 1999.
[40] R. Deissler and M. Perlmutter, "Analysis of the flow and energy separation in a turbulent vortex," International Journal of Heat and Mass Transfer, vol. 1, pp. 173-191, 1960.
[41] J. Hartnett and E. Eckert, "Experimental study of the velocity and temperature distribution in a high-velocity vortex-type flow," Trans. ASME, vol. 79, pp. 751-758, 1957.
[42] J. Camire, "Experimental investigation of vortex tube concepts," University of British Columbia, 1995.
[43] P. Promvonge and S. Eiamsa-ard, "Investigation on the vortex thermal separation in a vortex tube refrigerator," Science Asia, vol. 31, pp. 215-223, 2005.
[44] N. Aljuwayhel, G. Nellis, and S. Klein, "Parametric and internal study of the vortex tube using a CFD model," International Journal of Refrigeration, vol. 28, pp. 442-450, 2005.
[45] U. Behera, P. Paul, S. Kasthurirengan, R. Karunanithi, S. Ram, K. Dinesh, et al., "CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube," International Journal of Heat and Mass Transfer, vol. 48, pp. 1961-1973, 2005.
[46] H. Skye, G. Nellis, and S. Klein, "Comparison of CFD analysis to empirical data in a commercial vortex tube," International Journal of Refrigeration, vol. 29, pp. 71-80, 2006.
[47] Stirling A. Colgate and J. R. Buchler, "Coherent Transport of Angular Momentum-The Ranque-Hilsch Tube as a Paradigm," arXiv preprint astro-ph/9909022, 1999.
[48] T. Dutta, K. Sinhamahapatra, and S. Bandyopdhyay, "Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube," International journal of refrigeration, vol. 33, pp. 783-792, 2010.
[49] S. E. Rafiee and M. Rahimi, "Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–Validation and CFD optimization," Energy, vol. 63, pp. 195-204, 2013.
[50] S. E. Rafiee and M. Sadeghiazad, "Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using< i> k–< i> ɛ turbulence model," Applied Thermal Engineering, vol. 66, pp. 65-74, 2014.
[51] H. Versteeg and W. Malalasekera, "An introduction to computational fluid dynamics," Finite Volume Method, Essex, Longman Scientific & Technical, 1995.
[52] ANSYS CFX14.5-Solver, "Release 14.5: Theory," ANSYS CFX 14.5 Support
Documentation, vol. ANSYS Inc, 2012.
[53] رضاییبخش،م, "دانشجوی کارشناسی ارشد دانشکده مکانیک دانشگاه صنعتی اصفهان," ورودی 1388.
[54] J. D. Anderson, " Computational Fluid Dynamics: The Basics with Applications," McGraw-Hill, Ed., ed, 1995.