فهرست:
فصل 1: مقدمه 1
1-1- پیشگفتار 2
1-2- نحوه ساخت میکروکانال 5
1-3- توصیف مسأله 8
1-4- اهداف پایان نامه 11
فصل 2: مروری بر تحقیقات گذشته 12
فصل 3: اختلاط در ابعاد کوچک 28
3-1- چالش ایجاد انتقال جرم و اختلاط در ابعاد کوچک 29
3-2- پدیده انتقال جرم 29
3-2-1- انتقال جرم از طریق مکانیزم نفوذ 30
3-2-2- انتقال جرم از طریق مکانیزم جابجایی 30
3-3- انواع ریزمخلوطکنها و شیوههای اختلاط 31
3-4- میکروکانالهای پره دار به عنوان ریزمخلوطکنها 34
3-5- روشهای تعیین میزان اختلاط 36
فصل 4: معادلات حاکم 38
4-1- مقدمه 39
4-2- تولید شبکه 40
4-3- معادلات حاکم 42
4-4- شرایط مرزی 43
عنوان صفحه
فصل 5: نتایج 46
5-1- معرفی هندسه مسأله 47
5-2- مطالعه شبکه 51
5-3- همگرایی 54
5-4- سنجش صحت نتایج برای چاه حرارتی 55
میکروکانالی پره دار با فرض دائمی بودن جریان
5-5- نتایج به دست آمده برای چاه حرارتی 58
میکروکانالی پره دار با فرض دائمی بودن جریان
5-5-1- انتقال حرارت در میکروکانال چاه حرارتیcm² 2×1 58
5-5-2- انتقال حرارت در چاه حرارتیcm² 1×1 65
5-6- نرخ تولید انتروپی در چاه حرارتی میکروکانالی 73
5-7- بررسی رفتار غیر دائمی جریان در چاه حرارتی میکروکانالی پره دار 76
5-7-1- سنجش صحت نتایج برای حل زمانمند جریان 76
حول یک استوانه دو بعدی
5-7-2- نتایج به دست آمده برای چاه حرارتی میکروکانالی 79
پره دار با فرض ناپایدار و دو بعدی بودن جریان
5-7-3- سنجش صحت نتایج برای جریان سه بعدی زمانمند حول یک استوانه 82
5-7-4- نتایج به دست آمده برای چاه حرارتی میکروکانالی پره دار 87
با فرض ناپایدار و سه بعدی بودن جریان
5-8- نتایج برای اختلاط مایعات در میکروکانالها 88
5-8-1- صحه گذاری نتایج عددی حاضر برای اختلاط مایعات در میکروکانالها 88
5-8-2- نتایج به دست آمده برای اختلاط در میکروکانالها 89
فصل 6: جمع بندی و پیشنهادات 97
6-1- جمع بندی 98
عنوان صفحه
6-2- پیشنهادات 99
مراجع 100
منبع:
[1] Kandlikar, S. G. and Grande, W. J., (2003), Evolution of microchannel flow passages –thermohydraulic performance and fabrication technology, Heat Transfer Eng., 24(1), 3–17.
[2] Ashman, S., and Kandlikar, S. G., (2006), A review of manufacturing processes for microchannel heat exchanger fabrication, Fourth International Conference on Nanochannels, Microchannels and Minichannels June 19-21, Limerick, Ireland.
[3] Kandlikar, S. G. and Grande, W. J., (2004), Evaluation of single-phase flow in microchannels for high flux chip cooling – thermohydraulic performance enhancement and fabrication technology, Heat Trans. Eng., 25(8), 5–16.
[4] Kosar, A., and Peles, Y., (2006), Thermal-hydraulic performance of MEMS-based pin fin heat sink, Journal of Heat Transfer 128, ASME.
[5] Pease, R. F. W., and Tuckerman, D. B., (1981), High-performance heat sinking for VLSI, IEEE Electron Device Letters, Vol. EDL-2, No 5, pp 126-129.
[6] Phillips, R. J., (1987), Forced convection, liquid cooled microchannel heat sinks, M.S. Thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology.
[7] Qu, W., and Mudawar, I., (2002), Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink, Int. J. Heat and Mass Transfer, Vol.45, pp.2549-2565.
[8] Ryu, J. H., Choi, D. H. and Kim, S. J., (2002), Numerical optimization of the thermal performance of a microchannel heat sink, Int. J. Heat and Mass Transfer, Vol.45, pp.2823-2827.
[9] Tao, W. Q., He, Y. L., Wang, Q. W., Qu, Z. G., and Song, F. Q., (2002), A unified analysis on enhancing single phase convective heat transfer with field synergy principle, Int. J. Heat Mass Transfer, 45(24), pp. 4871–4879.
[10] Steinke, M., E. and Kandlikar, S., G., (2005), Single phase liquid friction factors in microchannels, Proceedings of the 3rd International Conference on Microchannels and Minichannels, part A, pp. 291-303.
[11] Steinke, M., E. and Kandlikar, S., G., (2005), Single phase liquid heat transfer in microchannels, Proceedings of the 3rd International Conference on Microchannels and Minichannels, part B, pp. 667-678.
[12] ] Li, J., and Peterson, G. P., (2007), 3-Dimensional numerical optimization of silicon-based high performance parallel microchannel heat sink with liquid flow, Int. J. Heat Mass Transfer 50, pp. 2895–2904.
[13] Kosar, A., (2010), Effect of substrate thickness and material on heat transfer in microchannel heat sinks, Int. J. of Thermal Sciences 49, pp. 635-642.
[14] Qu, W., Mala, G. M., and Li, D., (2000), Heat transfer for water flow in trapezoidal silicon microchannels, Int. J. Heat Mass Transfer 43, pp. 3925–3936.
[15] Wu, H. Y., and Cheng, P., (2003), An experimental study of convective heat transfer in silicon microchannels with different surface conditions, Int. J. Heat Mass Transfer 46, pp. 2547–2556.
[16] Hasan, M. I., Rageb, A. A., Yaghoubi, M., and Homayoni, H., (2009), Influence of channel geometry on the performance of a counter flow microchannel heat exchanger, Int. J. Thermal Sciences 48, pp. 1607–1618.
[17] Chen, Y., Zhang, C., Shi, M., and Wu, J., (2009), Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks, 36, pp. 917-920.
[18] Abouali, O., and Baghernezhad, N., (2010), Numerical investigation of heat transfer enhancement in a microchannel with grooved surfaces, Journal of Heat Transfer, Vol. 132.
[19] Kandlikar, S. G and Upadhye, H. R., (2005), Extending the heat flux limit with enhanced microchannels in direct single-phase cooling of computer chips, Invited Paper presented at IEEE-Semi-Therm 21, San Jose.
[20] Peles, Y., Kosar, A., Mishra, C., Kuo, C., and Schneider, B., (2005), Forced convection heat transfer across a pin fin micro heat sink, Int. J. Heat Mass Transfer 48, pp. 3615–3627.
[21] Rizzi, M., Experimental investigation of pin fin heat sink effectiveness.
[22] Sahin, B., and Demir, A. (2007), Performance analysis of a heat exchanger having perforated square fins, Applied Thermal Engineering.
[23] Jasperson, B. A., Jeon, Y., Turner, K. T., Pfefferkorn, F. E., and Qu, W., (2010), Comparison of micro-pin-fin and microchannel heat sinks considering thermal-hydraulic performance and manufacturability, IEEE transactions on components and packaging technologies, Vol. 33, No. 1.
[24] Croce, G., Dُagaro, P., and Nonino, C., (2007), Three-dimensional roughness effect on microchannel heat transfer and pressure drop, Int. J. Heat Mass Transfer 50, pp. 5249-5259.
[25] Hong, F., and Cheng, P., (2009), Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks, Int. J. Heat Mass Transfer 36, pp. 651–656.
[26] Koz, M., and Kosar, A., (2010), Parameter optimization of a micro heat sink with circular pin-fins, FEDSM-ICNMM2010-30473, ASME, Montreal, Canada.
[27] John, T. J., and Mathew, B., (2010), S-shape pin-fins for enhancement of overall performance of the pin-fin heat sink, FEDSM-ICNMM2010-31164, ASME, Montreal, Canada.
[28] Kockmann, N., Holvey, C., and Roberge, D. M., (2009), Transitional flow and related transport phenomena in curved microchannels, ICNMM2009, June 22-24, South Korea.
[29] Deshmukh, S. R., and Vlachos, D.G., (2005), Novel micromixers driven by flow instabilities: application to post-reactors, AIChE Journal, Vol. 51, No. 12.
[30] Kim, K. Y., and Ansari, M. A., (2007), Shape optimization of a micromixer with staggered herringbone groove, Chemical Engineering Science 62, pp. 6687 –6695.
[31] Somashekar, V., Olsen, M. G., and Stremler, M. A., (2009), Flow structure in a wide microchannel with surface grooves, Mechanics Research Communications 36, pp. 125–129.
[32] Nguyen, N. T., and Wu, Z., (2005), Micromixers- a review, Journal of micromechanics and microengineering, Vol. 15.
[33] Wang, Y., Zhe, J., and Chung, B. T. F., (2008), A rapid magnetic particle driven micromixer, Microfluid Nanofluid, Vol. 4, pp. 375-389.
[34] Chen, J. J., Chen, C. H., and Shie, S. R., (2011), Optimal designs of staggered Dean vortex micromixers, Int. J. Mol. Sci., 12, 3500-3524.
[35] Tseng, L. Y., Yang, A. S., Lee, C. Y., and Hsieh, C. Y., (2011), CFD-Based optimization of a diamond-obstacles inserted micromixer with boundary protrusions, Engineering Application of Computational Fluid Mechanics Vol. 5, No. 2, pp. 210-222.
[36] Cengel, Y., (2006), Heat and mass transfer: A practical approach, Third Edition, McGrraw-Hill.
[37] Bertin, J. J., 1994, Hypersonic Aerothermodynamics, AIAA.
[38] Hirsch, C., (2007), Numerical computation of internal and external flows.
[39] Patankar, S. V. , (1980), Numerical heat transfer and fluid flow, Hemisphere Series on Computational Methods in Mechanics and Thermal Science.
[40] Hessel, V., Lowe, H., and Schonfeld, F., (2005), Micromixers- a review on passive and active mixing principles, Chemical Engineering Science, Issue 60, pp. 2479-2501.
[41] Kanti, A., (2008), Numerical modeling of microscale mixing using lattice Boltzmann method, PhD Thesis, Virginia Polytechnic Institute and State University.
[42] Karniadakis, G., Beskok, A. and Aluru, N., (2005), Microflows and Nanoflows: Fundamentals and Simulation, Interdisciplinary Applied Mathematics, Springer.
[43] Mansur, E., Ye, M., Wang, Y., and Dai, Y., (2008), A state-of-the-art review of mixing in microfluidic mixers, Chinese Journal of Chemical Engineering, Vol. 16, pp. 503-516.
[44] Hardt, S. and Schonfeld, F., (2007), Microfluidic technologies for miniaturized analysis systems, Springer.
[45] Wang, Y., Zhe, J., Chung, B., and Dutta, P., (2008), A rapid magnetic particle driven micromixer, Microfluidics and Nanofluidics, Vol. 4, pp. 375-389.
[46] Le, T. N., Suh Y. K., and Kang, S., (2010), A numerical study on flow and mixing in a microchannel using magnetic particles, Journal of Mechanical Science and Technology, Issue 4, pp. 441-450.
[47] Rida, A., and Gijs, M. A. M., (2004), Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying, Analytical Chemistry, Vol. 76, pp. 6239-6246.
[48] Lund-Olesen, and Torsten, (2008), Magnetic bead micromixer: influence of magnetic element geometry and field amplitude, Journal of applied physics, Vol. 103.
[49] Steinke, M. E. and Kandlikar, S. G., (2004), Single-phase enhancement techniques in microchannel flows, ICMM2004-2328, ASME, Second International Conference on Microchannels and Mini-channels, Rochester, NY.
[50] Peles, Y., Kosar, A., Mishra, C., Kuo, C., and Schneider, B., (2005), Forced convection heat transfer across a pin fin micro heat sink, International Journal of Heat and Mass Transfer Vol. 48, pp. 3615–3627.
[51] Kim, D. K., and Kim, S. J., (2006), Averaging approach for microchannel heat sinks subject to the uniform wall temperature condition, Journal of Heat Transfer Vol. 49, pp. 695-706.
[52] Abbassi, H., (2007), Entropy generation analysis in a uniformly heated microchannel heat sink, Energy, Vol. 32, pp. 1932-1947.
[53] Kalro, V., and Tezduyar, T., (1997), Parallel 3D computation of unsteady flows around circular cylinders, Parallel Computing Vol. 23, pp. 1235-1248.
[54] Barkley, D., and Henderson, R. D., (1996), Three-dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech. Vol. 322, pp. 215-241.
[55] Chen, X., and Lam, Y. C., (2004), An analytical solution on convective and diffusive transport of an analyte in laminar flow of microfluidic slit, Singapore: Singapore-MIT Alliance. [Online] < http://dspace.mit.edu/handle/1721.1/3899>