فهرست:
1. فصل اول: مقدمه 1
1-1- مقدمه.. 2
2. فصل دوم: مروری بر تحقیقات انجام شده 4
2-1- ترکیب سوپرآلیاژها 5
2-2 پوششهای مورد استفاده در سوپرآلیاژها 6
2-3- فرآیندهای رسوبدهی.... 7
2-3-1- رسوبدهی الکتریکی.... 7
2-4- نکات مهم در طراحی نانو کامپوزیتها 12
2-4-1- پراکندگی.... 12
2-4-2- آرایش..... 12
2-4-3- ارزش اقتصادی.... 13
2-4-4- رسوب الکتریکی.... 13
2-5- فرآیند سمنتاسیون پودری برای تولید پوششهای آلومیناید... 13
2-5-1- مزایای فرآیند سمنتاسیون پودری.... 15
2-5-2- محدودیتهای فرآیند سمنتاسیون پودری.... 15
2-6- پوششهای آلومیناید بر روی نیکل و سوپر آلیاژهای پایه نیکل... 16
2-6-1- پوششهای بدست آمده از فرآیند با اکتیویته بالای آلومینیوم 17
2-6-2- پوششهای تولید شده توسط فرآیندهای اکتیویته پایین آلومینیوم 22
2-6-2-2- سوپر آلیاژهای پایه نیکل... 23
2-7- پیش عملیات قبل از آلومینایزینگ...... 24
2-8- مورفولوژی سطح پوششهای آلومیناید... 25
2-9- سیستمهای آلومیناساز. 27
2-10- مکانیزمهای اثر عناصر واکنشگر در آلیاژهای آلومینا ساز. 28
2-11- تاثیر عناصر واکنشگر بر پوسته آلومینا 29
2-11-1- تاثیر عناصر واکنشگر بر رشد و چسبندگی پوسته آلومینا 30
2-11-2- تقویت پیوند آلیاژ/پوسته و پدیده جدایش..... 30
3. فصل سوم: روش تحقیق 32
3-2- مواد اولیه و تجهیزات مورد نظر برای اعمال پوشش..... 34
3-2-1- آلیاژ زیر لایه.. 34
3-2-2- فرآیند آبکاری الکتریکی.... 34
3-2-2-1- مواد مورد استفاده در فرآیند آبکاری الکتریکی.... 34
3-2-2-2- تجهیزات مورد استفاده در فرآیند آبکاری الکتریکی.... 36
3-2-2-3- اعمال پوشش آبکاری الکتریکی.... 37
3-2-3- فرآیند پوششدهی نفوذی.... 40
3-2-3-1- پودرهای مورد استفاده در فرآیند پوششدهی نفوذی.... 40
3-2-3-2- تجهیزات مورد استفاده در فرآیند پوششدهی نفوذی.... 40
3-2-3-3- اعمال پوشش نفوذی.... 41
3-3- مشخصهیابی نمونهها 42
3-3-1- متالوگرافی.... 42
3-3-2- مشاهده ریزساختار. 42
4. فصل چهارم: یافتههای آزمایشگاهی 44
4-1- آبکاری الکتریکی نیکل... 45
4-2- آبکاری نیکل نانوکامپوزیتی.... 45
4-3- آلومینیومدهی نفوذی.... 48
4-4- پوششهای نهایی.... 52
5. فصل پنجم: تحلیل یافتهها 57
6. فصل ششم: نتیجهگیری و پیشنهادات 60
6-1- نتیجهگیری.... 61
6-2- پیشنهادات.... 62
مراجع 63
منبع:
[1] P. Schilke, A. Foster, and J. Pepe, Advanced gas turbine materials and coatings: General Electric Company, 1991.
[2] J. H. Westbrook and R. L. Fleischer, Magnetic, electrical and optical properties, and applications of intermetallic compounds: Wiley Chichester, UK, and New York, 2000.
[3] M. Gell, C. Kortovich, R. Bricknell, W. Kent, and J. Radavich, "Superalloys 1984," Champion, p. 1984, 1984.
[4] D. R. Holmes and A. Rahmel, Materials and coatings to resist high temperature corrosion: Applied Science Publishers, 1978.
[5] A. Nicoll, G. Wahl, and U. Hildebrandt, "Ductile-brittle transition of high temperature coatings for turbine blades," Materials and Coatings to Resist High Temperature Corrosion, Verein Deutscher Eisenhuttenleute, pp. 233-252, 1977.
[6] A. I. H. Committee, Surface Engineering vol. 5: ASM International, 1994.
[7] H. Kuhn and D. Medlin, "ASM Handbook. Volume 8: Mechanical Testing and Evaluation," ASM International, Member/Customer Service Center, Materials Park, OH 44073-0002, USA, 2000.
[8] K. Hou, M. Ger, L. Wang, and S. Ke, "The wear behaviour of electro-codeposited Ni–SiC composites," Wear, vol. 253, pp. 994-1003, 2002.
[9] R. Mevrel, C. Duret, and R. Pichoir, "Pack cementation processes," Materials Science and Technology, vol. 2, pp. 201-206, 1986.
[10] G. Goward and D. Boone, "Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys," Oxidation of metals, vol. 3, pp. 475-495, 1971.
[11] E. J. Grybowski and W. E. Olson, "Process for applying gas phase diffusion aluminide coatings," ed: Google Patents, 1991.
[12] E. Lang, "Coatings for high temperature applications," E. Lang, Editor, Applied Science Publishers, 1984, 48 English Pounds, 442 pages, ISBN 0-85334-221-0, 1984.
[13] G. Goward and L. Cannon, "Pack cementation coatings for superalloys: a review of history, theory, and practice," Journal of engineering for gas turbines and power, vol. 110, pp. 150-154, 1988.
[14] D. DEADMORE and S. YOUNG, "Silicon-slurry/aluminide coating(protecting gas turbine engine vanes and blades)[Patent]," 1983.
[15] A. Strang, E. Lang, and R. Brunetand, "High temperature alloys for gas turbines," in High Temperature Alloy for Gas Turbines, Proc. Conf. Liege, 1982, pp. 4-6.
[16] G. Goward, "Progress in coatings for gas turbine airfoils," Surface and Coatings Technology, vol. 108, pp. 73-79, 1998.
[17] R. Streiff, J. N'Gandu Muamba, and D. Boone, "Surface morphology of diffusion aluminide coatings," Thin solid films, vol. 119, pp. 291-300, 1984.
[18] F. H. Stott and G. C. Wood, "Growth and adhesion of oxide scales on Al2O3-forming alloys and coatings," Mater. Sci. Eng, vol. 87, pp. 267-274, 1987.
[19] N. Lindblad, "A review of the behavior of aluminide-coated superalloys," Oxidation of Metals, vol. 1, pp. 143-170, 1969.
[20] W. E. Boggs, "The Oxidation of Iron‐Aluminum Alloys from 450° to 900° C," Journal of the Electrochemical Society, vol. 118, pp. 906-913, 1971.
[21] R. Prescott and M. Graham, "The formation of aluminum oxide scales on high-temperature alloys," Oxidation of Metals, vol. 38, pp. 233-254, 1992.
[22] G. C. Wood, "High-temperature oxidation of alloys," Oxidation of Metals, vol. 2, pp. 11-57, 1970.
[23] G. Wood and F. Stott, "The influence of aluminum additions on the oxidation of Co-Cr alloys at 1000 and 1200° C," Oxidation of Metals, vol. 3, pp. 365-398, 1971.
[24] F. Stott, G. Wood, and M. Hobby, "A comparison of the oxidation behavior of Fe-Cr-Al, Ni-Cr-Al, and Co-Cr-Al alloys," Oxidation of Metals, vol. 3, pp. 103-113, 1971.
[25] P. Choquet, C. Indrigo, and R. Mevrel, "Microstructure of oxide scales formed on cyclically oxidized M Cr Al Y coatings," Materials Science and Engineering, vol. 88, pp. 97-101, 1987.
[26] J. Tien and F. Pettit, "Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys," Metallurgical Transactions, vol. 3, pp. 1587-1599, 1972.
[27] D. Delaunay, A. Huntz, and P. Lacombe, "Impurities influence on oxidation kinetics of Fe-Ni-Cr-Al alloys," Corrosion science, vol. 24, pp. 13-25, 1984.
[28] A. Kumar, M. Nasrallah, and D. L. Douglass, "The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys," Oxidation of Metals, vol. 8, pp. 227-263, 1974.
[29] J. L. Smialek and R. Gibala, "Structure of transient oxides formed on nicrai alloys," Metallurgical Transactions A, vol. 14, pp. 2143-2161, 1983.
[30] D. Lees, "On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the “sulfur effect”," Oxidation of Metals, vol. 27, pp. 75-81, 1987.
[31] A. Funkenbusch, J. Smeggil, and N. Bornstein, "Reactive element-sulfur interaction and oxide scale adherence," Metallurgical Transactions A, vol. 16, pp. 1164-1166, 1985.
[32] C. Briant and K. Luthra, "Surface segregation in MCrAlY alloys," Metallurgical Transactions A, vol. 19, pp. 2099-2108, 1988.
[33] M. Lagrange, A. Huntz, and J. Davidson, "The influence of Y, Zr or Ti additions on the high temperature oxidation resistance of Fe-Ni-Cr-Al alloys of variable purity," Corrosion science, vol. 24, pp. 613-627, 1984.
[34] F. Golightly, G. Wood, and F. Stott, "The early stages of development of α-Al2O3 scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys at high temperature," Oxidation of Metals, vol. 14, pp. 217-234, 1980.
[35] T. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, "Metallic yttrium additions to high temperature alloys: Influence on Al2O3 scale properties," Oxidation of metals, vol. 22, pp. 83-100, 1984.
[36] D. Delaunay and A. Huntz, "Mechanisms of adherence of alumina scale developed during high-temperature oxidation of Fe-Ni-Cr-Al-Y alloys," Journal of Materials Science, vol. 17, pp. 2027-2036, 1982.
[37] P. Nanni, C. Stoddart, and E. Hondros, "Grain boundary segregation and sintering in alumina," Materials Chemistry, vol. 1, pp. 297-320, 1976.
[38] A. Huntz, "Effect of active elements on the oxidation behaviour of Al2O3-formers," in The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, ed: Springer, 1989, pp. 81-109.
[39] J. D. Cawley and J. W. Halloran, "Dopant Distribution in Nominally Yttrium‐Doped Sapphire," Journal of the American Ceramic Society, vol. 69, pp. C‐195-C‐196, 1986.
[40] H. Hindam and D. Whittle, "Microstructure, adhesion and growth kinetics of protective scales on metals and alloys," Oxidation of Metals, vol. 18, pp. 245-284, 1982.
[41] D. Moon, "Role of reactive elements in alloy protection," Materials Science and Technology, vol. 5, pp. 754-764, 1989.
[42] A. Huntz, "Influence of active elements on the oxidation mechanism of M Cr Al alloys," Materials Science and Engineering, vol. 87, pp. 251-260, 1987.
[43] F. Golightly, F. Stott, and G. Wood, "The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy," Oxidation of Metals, vol. 10, pp. 163-187, 1976.
[44] C. Briant and R. Mulford, "Surface segregation in austenitic stainless steel," Metallurgical Transactions A, vol. 13, pp. 745-752, 1982.
[45] S. Mrowec, J. Jedliński, and A. Gil, "The influence of certain reactive elements on the oxidation behaviour of chromia-and alumina-forming alloys," Materials Science and Engineering: A, vol. 120, pp. 169-173, 1989.
[46] G. Goward, D. Boone, and C. Giggins, "Formation and degradation mechanisms of aluminide coatings on nickel-base superalloys," ASM Trans Quart, vol. 60, pp. 228-241, 1967.
[47] M. M. P. JANSSEN, "Diffusion in the Nickel-Rich Part of the Ni-AI System at 1000°C to 1300°C Ni3AI Layer Growth, Diffusion Coefficients, and Interface Concentrations," Metall Trans, vol. 4, p. 1623, 1973.
[48] M. Janssen and G. Rieck, "Reaction diffusion and Kirkendall-effect in the nickel-aluminum system," AIME MET SOC TRANS, vol. 239, pp. 1372-1385, 1967.
[49] B. Pint, "Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect," Oxidation of metals, vol. 45, pp. 1-37, 1996.