فهرست:
فهرست مطالب
فهرست جدولها
فهرست شکلها
فهرست علائم
فصل اول- مقدمه
1-1 میکروکانالها
1-2 تغییر خاصیت رئولوژیکی سیال
1-3 مواد افزودنی به مایعات
فصل دوم-میکروکانالها
2-1 چکیده
2-2 تاریخچه میکروکانالها
2-3 معرفی میکروکانالها
2-4 طبقهبندی میکروکانالها و مینیکانالها
2-5 مزایا و چالشهای میکروکانالها
2-6 روشهای ساخت میکروکانالها
2-6-1 فناوری متداول
2-6-2 تغییر شکل میکرو
2-6-3 اره کردن میکرو (برشکاری میکرو)
2-6-4 تکنولوژی مدرن
2-6-5 MEMS (سیستم میکرو الکترومکانیک)
2-6-6 ماشینکاری میکرو لیزر
2-7 جریان تک فاز در میکروکانالها
2-8 روابط افت فشار
2-9 روابط انتقال حرارت
2-9-1 جریان مغشوش
2-10 کاربردهای میکروکانالها
فصل سوم- سیالات غیر نیوتنی
3-1 طبقهبندی سیالات غیر نیوتنی
3-1-1 سیالات غیر نیوتنی مستقل از زمان
3-1-2 مدل قاعده توانی
3-1-3 مدل کراس
3-1-4 مدل کارئو
3-1-5 مدل الیس
3-1-6 سیالات غیر نیوتنی تابع زمان
3-1-7 سیالات ویسکوالاستیک
فصل چهارم- نانوسیالات
4-1 مفهوم نانوسیالات
4-2 مزایای نهان نانوسیال
4-3 تهیه نانوسیال
4-4 خواص ترموفیزیکی نانوسیالات
4-4-1 چگالی
4-4-2 گرمای ویژه
4-4-3 لزجت
4-4-4 ضریب هدایت حرارتی
4-5 فناوری نانو
4-6 تولید نانوذرات
4-6-1 فرآیندهای حالت بخار
4-6-2 فرآیند حالت مایع و حالت جامد
4-6-3 تولید نانوذرات با استفاده از روش سیال فوق بحرانی
4-7 نانولولهها
4-8 انتقال حرارت جابهجایی در نانوسیالات
4-8-1 جابهجایی اجباری در نانوسیالات
4-8-2 مدلهای ریاضی تعیین ضریب انتقال حرارت جابهجایی نانوسیالات
4-8-3 انتقال حرارت جابهجایی طبیعی
فصل پنجم- اغتشاش
5-1 مقدمه
5-2 ویژگیهای جریان اغتشاشی سیالات
5-3 مدلهای اغتشاشی
5-3-1 مدل k-e
5-3-2 استفاده از تابع جریان در مدل k-e برای اعداد رینولدز بالا
5-3-3 مدل k-e در اعداد رینولدز پایین
5-3-4 مدل RNG
5-3-5 مدل k-w
5-3-6 مدل تنش رینولدزی (RSM)
فصل ششم- مطالعات آزمایشگاهی، عددی و تئوریک
6-1 مقدمه
6-2 مطالعات آزمایشگاهی
6-3 مطالعات تئوریک
6-4 مطالعات عددی
فصل هفتم- بیان مسئله
7-1 مقدمه
7-2 تشریح مسئله
7-3 تعیین خواص ترموفیزیکی نانوسیال
7-4 استقلال شبکه و تعیین شرایط مرزی
فصل هشتم- نتایج
8-1 محاسبه خواص ترموفیزیکی نانوسیال
8-2 محاسبه ضریب انتقال حرارت جابهجایی و عدد ناسلت
8-3 اعتبار سنجی
8-4 محاسبه ضریب انتقال حرارت جابهجایی و عدد ناسلت سیال غیرنیوتنی پایه
8-5 تأثیر غلظت نانوذرات بر ضریب انتقال حرارت جابهجایی و عدد ناسلت
8-6 تأثیر اندازه نانوذرات بر ضریب انتقال حرارت جابهجایی
8-7 تأثیر عدد رینولدز بر ضریب انتقال حرارت جابهجایی نانوسیال و عدد ناسلت
فصل نهم- جمعبندی و پیشنهادها
9-1 جمعبندی
9-2 پیشنهادها
مراجع
Abstract
منبع:
Barkhordari, M., Etemad, S.Gh., "Numerical study of non-newotonian flow and Heat transfer in circular microchannels", Proceeding of the 4th international conference on computational heat and mass transfer, Paris-Cachan france, 2005.
Maxwell, J.C., "Electricity and Magnetism", Clarendon Press, Oxford,UK, 1873.
Tuckerman, D.B., Pease, R.F., "High performance heat sinking for VLSI". IEEE Electron, Dev. Letts. EDL-Vol 2, 1981, pp 126–129.
Suo, M., Griffith, P., "Two-phase flow in capillary tubes", J. Basic Eng, Vol 86, 1964, pp 576–582.
Mehendale, S.S., Jacobi, A.M., Ahah, R.K., "Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design", Appl. Mech, Vol 53, 2000,pp 175–193.
Kandlikar, S.G., Garimella, S., Li, D., Colin, S., King, M.R., Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Amsterdam, 2006.
Palm, B., "Proceedings of Heat Transfer and Transport Phenomena in Microchannel",Heat Transfer in Microchannel, Begell House Inc, Banff, Canada, 2000.
Nguyen, N.T., Werely, S.T., Fundamentals and Applications of Microfluidics, Artech House,Boston, 2002.
Kukowski, R., "MDT- Micro deforamation Technology", ASME IMECE, Washington D.C, 2003.
Wu, P.Y., Little, W.A., "Measurement of friction factor for the flow of gases in very fine channels used for microminiature Joule Thompson refrigerators", Cryogenics, Vol 23, No 5, 1983, pp 273–277.
Grigull, U., Tratz, H., "Thermischer einlauf in ausgebildeter laminarer rohrströmung", Int. J. Heat Mass Transf, Vol 85, 1965, pp 669–678.
Adams, T.M., Abdel-Khalik, S.I., Jeter, M., Qureshi, Z.H., "An experimental investigation of singlephase forced convection in microchannels", Int. J. Heat Mass Transf, Vol 41, No (6–7), 1997, pp 851–857.
Maxwell, J.C., "A Treatise on Electricity and Magnetism", Clarendon Press, Oxford, 1873.
Choi, S.U.S., "Enhancing thermal conductivity of fluid with nanoparticles", Development and applications of non-Newtonian flows, ASME, FED, Vol 231/MD 66, 1995.
Pak, B.C., Cho, Y.I., "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles", Exp. Heat Transfer, Vol 11, No2, 1998, pp 151-170.
Xuan, Y., Roetzel, W., "Conceptions for Heat Transfer Correlation of Nanofluids", International Journal of Heat and Mass Transfer, Vol 43, No 19, 2000, pp 3701-3707.
Einstein, A., "A New Determination of the Molecular Dimensions", Annals of Physics, Vol 324, No 2, 1906, pp 289-306.
Brinkman, H.C., "The Viscosity of Concentrated Suspensions and Solutions", Journal of Chemical Physics, Vol 20, No 4, 1952, p 571.
Batchelor, G.K., "The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles", Journal of Fluid Mechanics, Vol 83, No 1, 1977, pp 97-117.
Nguyen, C., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., and Angue Mintsa, H., "Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids - Hysteresis Phenomenon", International Journal of Heat and Fluid Flow, Vol 28, No 6, 2007, pp 1492-1506.
Yu, W., France, D.M., Choi, S.U.S., Routbort, J.L., Systems, E., "Review and Assessment of Nanofluid Technology for Transportation and Other Applications", Argonne National Laboratory, Energy Systems Division, Argonne, Illinois, 2007.
Tseng, W.J., Lin, K., "Rheology and Colloidal Structure of Aqueous TiO2Nanoparticle Suspensions", Materials Science and Engineering: A, Vol 355, No (1-2), 2003, pp 186-192.
Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G., "Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube", Superlattices and Microstructures, Vol 35, No (3-6), 2004, pp 543-557.
Koo, J., Kleinstreuer, C., "A New Thermal Conductivity Model for Nanofluids", Journal of Nanoparticle Research, Vol 6, No 6, 2004, pp 577-588.
Kulkarni, D,P., Das, D.K., Chukwu, G.A., "Temperature Dependent Rheological Property of Copper Oxide Nanoparticles Suspension (Nanofluid)", Journal of Nanoscience and Nanotechnology, Vol 6, 2006, pp 1150-1154.
Ozerinc, S., Kakac, S., Yazicioglu, A.G., "Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review", Microfluid. Nanofluid, Vol 8, No 2, 2010, pp 145-170.
Hamilton, R.L., Crosser, O.K., "Thermal Conductivity of Heterogeneous Two-Component Systems", Industrial and Engineering Chemistry Fundamentals, Vol 1, No 3, 1962, pp 187-191.
Bhattacharya, P., Saha, S.K., Yadav, A., Phelan, P.E., Prasher, R.S., "Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids", Journal of Applied Physics, Vol 95, No 11, 2004, pp 6492-6494.
Chon, C.H., Kihm, K.D., Lee, S.P., Choi, S.U.S., "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement", Applied Physics Letters, Vol 87, No 15, 2005.
Einstein, A., "Investigation on the Theory of Brownian Movement", Dover, New York, 1956.
Evans, W., Fish, J., Keblinski, P., "Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity", Applied Physics Letters, Vol 88, No 9, 2006, 093116-3.
Bruggeman, D.A.G., "The Calculation of Various Physical Constants of Heterogeneous Substances. I, The Dielectric Constants and Conductivities of Mixtures Composed of Isotropic Substances", Annals of Physics, Vol 416, No 7, 1935, pp 636-664.
Nan, C., Birringer, R., Clarke, D.R., Gleiter, H., "Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance", Journal of Applied Physics, Vol 81, No 10, 1997, pp 6692-6699.
Prasher, R., Phelan, P.E., Bhattacharya, P., "Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid)", Nano Letters, Vol 6, No 7, 2006, pp 1529-1534.
Xuan, Y., Li, Q., Hu, W., "Aggregation Structure and Thermal Conductivity of Nanofluids", American Institute of Chemical Engineers Journal, Vol 49, No 4, 2003, pp 1038-1043.
Li, Q., Xuan, Y., "Experimental Investigation on Transport Properties of Nanofluids", Heat Transfer Science and Technology 2000, B. Wang, ed, Higher Education Press, Beijing, 2000, pp 757–762.
Li, Y., Qu, W., Feng, J., "Temperature Dependence of Thermal Conductivity of Nanofluids", Chinese Physics Letters, Vol 25, No 9, 2008, pp 3319-3322.
Chen, G., "Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles", Journal of Heat Transfer, Vol 118, No 3, 1996, pp 539-545.
Incropera, F.P., Dewitt, D.P., Fundamentals of heat and mass transfer, John Wiley & sons, New York, 1996.
Xuan, Y., Li, Q., "Investigation on convective heat transfer and flow features of nanofluids", J.Heat Transfer, Vol 125, 2005, p 151.
Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B., Wu, G., "heat transfer properties of nanoparticle in fluid dospersions (nanofluids) in laminar flow", Int. J. Heat Mass Transfer, Vol 48, 2005, p 1107.
Wen, D., Ding, Y., "Experimental investigation into convective heat transfer of nanofluids at entrance region under laminar flow conditions", Int. J. Heat Mass Transfer, Vol 47, 2004, p 5181.
Xuan, Y., Roetzel, W., "Conception for heat transfer correlation of nanofluids", Int. Heat Mass Transfer, Vol 43, 2000, p 3701.
Li, Q., Xung, Y., "Convective heat transfer and flow characteristics of Cu-water nanofluid", Scince in China, Series E, Vol 45, No 4, 2002, p 408.
Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N., "Heat transfer enhancement by using nanofluids in forced convection flows", Int.J. Heat Fluid, Vol 26, 2005, p 530.
Khanafer, K., Vafai, K., Lightstone, M., "Bouyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids", International Journal of Heat and Mass Transfer, Vol 46, 2003, p 3639.
Mirmasoumi, S., Behzadmehr, A., "Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube", International Journal of Heat and Fluid Flow, Vol 29, 2008, pp 557–566.
Pak, B.C., Cho, Y.I., "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles", Experimental Heat Transfer, Vol 11, No 2, 1998, pp 151-170.
Li, Q., Xuan, Y., "Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid", Science in China,Series E, Vol 45, No 4, 2002, pp 408-416.
Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Lapkin, A.A., and Bavykin, D.V., "Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)", Powder Technology, Vol 183, No 1, 2008, pp 63-72.
Wen, D., Ding, Y., "Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions", International Journal of Heat and Mass Transfer, Vol 47, No 24, 2004, pp 5181-5188.
Hwang, K.S., Jang, S.P., Choi, S.U.S., "Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3Nanofluids in Fully Developed Laminar Flow Regime", International Journal of Heat and Mass Transfer, Vol 52, No (1-2), 2009, pp 193-199.
Heris, S.Z., Etemad, S., Esfahany, M.N., "Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer", International Communications in Heat and Mass Transfer, Vol 33, No 4, 2006, pp 529-535.
Duangthongsuk, W., Wongwises, S., "Heat transfer enhancement and pressure drop characteristics of TiO2/water nanofluid in a double-tube counter flow heat exchanger", International Journal of Heat and Mass Transfer, Vol 52, 2009, pp 2059-2067.
Hojjat, M., Etemad, S.GH., Bagheri, R.,Thibault, J., "Turbulent forced convection heat transfer of non-Newtonian nanofluids", Experimental Thermal and Fluid Science, Vol 35, 2011, pp 1351-1356.
Fotukian, S.M., Nasr Esfahany, M., "Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube", International Communications in Heat and Mass Transfer, Vol 37, 2010, pp 214–219.
Esfe Mohammad, H., Saedodin, S., Mahmoodi, M., "Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow", Experimental Thermal and Fluid Science, Vol 52, 2014, pp 68–78.
Hatami, M., Ganji, D.D., "Heat transfer and flow analysis for SA-TiO2 non-Newtonian nanofluid passing through the porous media between two coaxial cylinders", Journal of Molecular Liquids, Vol 188, 2013, pp 155–161.
Vafaei, S., Wen, D., "Convective heat transfer of Alumina nanofluids in a microchannel", IHTC,14-22206.
Corcione, M., Cianfrini M., Quintino, A., "Heat transfer of nanofluids in turbulent pipe flow", International Journal of Thermal Sciences, Vol 56, 2012, pp 58-69.
Xuan, Y., Roetzel, W., "Conceptions for Heat Transfer Correlation of Nanofluids", International Journal of Heat and Mass Transfer, Vol 43, No 19, 2000, pp 3701-3707.
Li, Q., Xuan, Y., "Convective Heat Transfer and Flow Characteristics of Cu-Water Nanofluid", Science in China, Series E, Vol 45, No 4, 2002, pp 408-416.
Ding, Y., Wen, D., "Particle Migration in a Flow of Nanoparticle Suspensions", Powder Technology, Vol 149, No (2-3), 2005, pp 84-92.
Buongiorno, J., "Convective Transport in Nanofluids", Journal of Heat Transfer, Vol 128, No 3, 2006, pp 240-250.
Hwang, K.S., Jang, S.P., Choi, S.U.S., "Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime", International Journal of Heat and Mass Transfer, Vol 52, No (1-2), 2009, pp 193-199.
Mansour, R.B., Galanis, N., Nguyen, C.T., "Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer with Nanofluids", Applied Thermal Engineering, Vol 27, No 1, 2007, pp 240-249.
Lotfi, R., Saboohi, Y., Rashidi, A.M., "Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches", International Communications in Heat and Mass Transfer, Vol 37, 2010, pp 74–78.
Praveen, K., Namburu, Debendra, K., Das, Krishna, M., Tanguturi, Ravikanth, S., Vajjha, "Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties", International Journal of Thermal Sciences, Vol 48, 2009, pp 290–302.
Heidary, H., Kermani, M.J., "Effect of nano-particles on forced convection in sinusoidal-wall channel", International Communications in Heat and Mass Transfer, Vol 37, 2010, pp 1520–1527.
Mirmasoumi, S., Behzadmehr, A., "Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube", International Journal of Heat and Fluid Flow, Vol 29, 2008, pp 557–566.
Akbari, M., Behzadmehr, A., Shahraki, F., "Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid", International Journal of Heat and Fluid Flow, Vol 29, 2008, pp 545–556.
Akbari, M., Galanis, N., Behzadmehr, A., "Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection", International Journal of Heat and Fluid Flow, Vol 37, 2012, pp 136–146.
Ghaffari, O., Behzadmehr, A., Ajam, H., "Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach", International Communications in Heat and Mass Transfer, Vol 37, 2010, pp 1551–1558.
Shariat, Mohammad., Akbarinia, A., Hossein Nezhad, A., Behzadmehr, A., Laur, R., "Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts", Applied Thermal Engineering, Vol 31, 2011, pp 2348-2359.
Rostamani, M., Hosseinizadeh, S.F., Gorji, M., Khodadadi, J.M., "Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties", International Communications in Heat and Mass Transfer, Vol 37,2010, pp 1426–1431.
Esmaeilnejad, A., Aminfar, H., Shafiee Neistanak, M., "Numerica investigation of forced convection heat transfer through microchannels with non-Newtonian nanofluids", International Journal of Thermal Sciences, Vol 75, 2014, pp 76-86.
Keshavarz, Moraveji, M., Haddad, S.M.H., Darabi, M., "Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics", International Communications in Heat and Mass Transfer, Vol 39, 2012, pp 995–999.
Kalteh, M., Abbassi, A., Saffar-Avval, M., Harting Jens, "Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, International Journal of Heat and Fluid Flow, Vol 32, 2011, pp 107–116.
Manca, O., Nardini, S., Ricci, D., "A numerical study of nanofluid forced convection in ribbed channels", Applied Thermal Engineering, Vol 37, 2012, pp 280-292.
Hojjat, M., Etemad, S.Gh., Bagheri, R., Thibault, J., "Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube", International Journal of Thermal Sciences, Vol 50, 2011, pp 525-531.
Salman, B.H., Mohammed, H.A., Munisamy, K.M., Kherbeet, A.Sh., "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids", Renewable and Sustainable Energy Reviews, Vol 28, 2013, pp 848–880.
Salma, Halelfadl., Ahmed Mohammed, A., Normah, M.G., Thierry, M., Patrice, E., Robiah, A., "Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid", Applied Thermal Engineering, Vol 62, 2014, pp 492-499.
Hojjat, M., Etemad, S.Gh., Bagheri, R., Thibault, J., "Turbulent forced convection heat transfer of non-Newtonian nanofluids", Experimental Thermal and Fluid Science, Vol 35, 2011, pp 1351–1356.
Hojjat, M., Etemad, S.Gh., Thibault, J., "Rheological characteristics of non- Newtonian nanofluids: Experimental investigation", International Communications in Heat and Mass Transfer, Vol 38, 2011, pp 144–148.
Yarin, L.P., Mosyak, A., Hetsroni, G., " Fluid Flow, Heat Transfer and Boiling in Micro-Channels", Springer,Verlag Berlin Heidelberg, 2009.
Bianco, V., Manca, O., Nardini, S., "Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube", International Journal of Thermal Sciences, Vol 50, 2011, pp 341-349.
Kandlikar, S., Garimella, S., Li, D., Colin, S., R King, M., " Heat Transfer and Fluid Flow in Minichannels and Microchannels", Elsevier, USA, 2006.
Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E., " Next Generation Microchannel Heat Exchangers ", Springer, New York Heidelberg Dordrecht London, 2013.
Tuckerman, D.B., Pease, R.F., "High performance heat sinking for VLSI". IEEE Electron. Dev.Letts. EDL-2, 1981, pp 126–129.
Gnielinski, V., "New equations for heat and mass transfer in turbulent pipe and channel flow", Int.Chem. Eng,Vol 16, 1976, pp 359–368.