فهرست:
فهرست شکلها ...........................................................................................................................................
ث
فهرست جداول ..........................................................................................................................................
ج
مقدمه .........................................................................................................................................................
1
فصل اول: مفاهیم و کلیات........................................................................................................................
6
1-1 سیستمهای میکروالکترومکانیکی ..........................................................................................
6
1-1-1 مقدمه ...............................................................................................................................
6
1-1-2 طبقه بندی سیستم های میکروالکترومکانیکی .......................................................
9
1-1-3 انواع عملگرهای میکروالکترومکانیکی ........................................................................
10
1-1-3-1 تحریک مغناطیسی ............................................................................................
10
1-1-3-2 تحریک توسط مواد پیزوالکتریک ....................................................................
11
1-1-3-3 تحریک دمایی .....................................................................................................
11
1-1-3-4 تحریک توسط آلیاژهای حافظه دار ................................................................
11
1-1-3-5 تحریک الکترواستاتیک .....................................................................................
11
1-1-4 میکرو عملگرهای الکترواستاتیک ...............................................................................
12
1-1-5 پدیده های معمول در سیستم های میکروالکترومکانیکی ....................................
13
1-1-5-1 میرایی لایه فشرده سیال ..................................................................................
13
1-1-5-2 میرایی ترموالاستیک .........................................................................................
13
1-1-5-3 ناپایداری کششی ................................................................................................
14
1-2 مواد متغییر تابعی .....................................................................................................................
15
1-2-1 مقدمه ...............................................................................................................................
15
1-2-2 تاریخچه مواد متغییر تابعی .........................................................................................
16
1-2-3 کاربرد مواد متغییر تابعی .............................................................................................
17
1-2-4 مدل سازی مواد متغییر تابعی ....................................................................................
18
1-2-4-1 مدل ردی .............................................................................................................
19
1-2-4-2 مدل نمایی ...........................................................................................................
19
1-2-4-3 مدل توانی ............................................................................................................
19
1-3 تئوری تنش کوپل یا گرادیان کرنش الاستیسیته ..............................................................
20
1-3-1 مقدمه ...............................................................................................................................
20
1-3-2 تاریخچه ی تئوری تنش کوپل ...................................................................................
20
فصل دوم: مروری بر کارهای انجام شده .............................................................................................
22
2-1 مطالعه ی اثر تغییرات دمائی در سیستمهای میکروالکترومکانیکی ...............................
22
2-2 مطالعه ی اثر نیروهای الکترواستاتیکی در سیستمهای میکروالکترومکانیکی ..............
23
2-3 مطالعه ی تئوری تنش کوپل در سیستمهای میکروالکترومکانیکی ...............................
25
2-4 مطالعه ی رفتار تیرها و ساختارهای FGM .........................................................................
27
2-5 هدف و ضرورت انجام تحقیق .................................................................................................
29
فصل سوم: ارائه ی مدل مورد مطالعه و استخراج معادلات حاکم .....................................................
31
3-1 معرفی سیستم مورد مطالعه ...................................................................................................
31
3-2 مدلسازی ریاضی و ریاضی و استخراج معادلات برای دستیابی به خیز تیر ..................
33
3-2-1 معادله ی هدایت گرما ..................................................................................................
33
3-2-2 فرمولاسیون معادلات میکروتیر FGM بر پایه ی MCST ....................................
34
فصل چهارم: روشهای حل معادلات تحت بارگذاریهای مختلف .........................................................
41
4-1 معادله ی استاتیکی ..................................................................................................................
41
4-1-1 اثر ولتاژ ............................................................................................................................
41
4-1-2 اثر تغییر دما ...................................................................................................................
42
4-1-3 اثر همزمان تغییر دما و اعمال تدریجی نیروی الکترواستاتیکی ..........................
43
4-2 معادله ی دینامیکی ..................................................................................................................
43
فصل پنجم: نتایج عددی ............................................................................................................................
46
5-1 مقدمه ..........................................................................................................................................
46
5-2 اثر اعمال تدریجی نیروی الکترواستاتیکی (در غیاب تغییرات دما) ................................
49
5-3 اثر اعمال تدریجی دما (در غیاب نیروی الکتروستاتیکی) ...............................................
50
5-4 اثر همزمان تغییرات دمائی و اعمال تدریجی نیروی الکترواستاتیکی ............................
52
5-5 اثر اعمال ولتاژ DC پله روی میکروتیر FGM ....................................................................
57
5-6 اثر اعمال ولتاژ DC پله روی میکروتیر FGM خمیده ناشی از تغییرات دمایی .........
59
فصل ششم: جمع بندی ..............................................................................................................................
61
6-1 نتیجه گیری ...............................................................................................................................
61
6-1 پیشنهادات برای کارهای آینده ..............................................................................................
62
مراجع ..........................................................................................................................................................
63
Abstract .................................................................................................................................................
68
منبع:
[1] Yang F., Chong A.C.M., Lam D.C.C., et al (2002). Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39 (10) 2731-2743.
[2] Nathanson, H.C., Newell W.E., Wickstrom R.A. and Davis J.R. )1967(. The Resonant Gate Transistor, IEEE Trans. on Electron Devices, )14( 117-133.
[3] Walkers J.A. (2000). the future of MEMS in telecommunications networks, Journal of Micromechanics and Microengineering (10)1-7.
[4] Zavaracky P.M., Majumber S., McGrur E. (1997). Micromechanical switches fabricated using nickel surface micromachining, Journal of Microelectromech Systems 6 3-9.
[5] Younis M.I. (2011). MEMS linear and nonlinear statics and dynamics, Springer NewYork Dordrecht Heidelberg London
[6] Rezazadeh, Gh., Tahmasebi A., Zubtsov M., (2006). Application of Piezoelectric Layers in Electrostatic MEM Actuators: Controlling of Pull-in Voltage. J Microsystem Technologies 12(12):1163-70.
[7] Jia, X.L., Yang J., Kitipornchai S., )2010(. Characterization of FGM micro-switches under electrostatic and Casimir forces. Materials Science and Engineering 10:012178.
[8] Epps J., Chandra R. (1997). Shape memory alloy actuation for active tuning of composite beams. Smart Material Structures (6) 251–264
[9] Bever M.B., Duwez P.F. (1972). Gradient in composite materials, Material Science Engineering )10) 1-8.
[10] Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A., Ford R.G. (1999). Functionally graded materials: design, processing and applications. Kluwer academic publishers.
[11] Daniel, I. M. and O. Ishai. Engineering Mechanics of Composite Materials. Oxford University Press, New York, NY, second edition, 2006.
[12] Reddy J.N. (2000). Analysis of functionally graded plates. John Wiley & Sons, Ltd.
[13] Fleck N.A., Muller G.M., Ashby M.F. (1994). Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia 42, 475–487
[14] Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P. (2003). Experiments and theory in strain gradient elasticity, J. Mech. Phys Solids, 51:1477–508.
[15] E. Cosserat, F. Cosserat (1909). Theorie des corps deformables. Hermann et Fils, Paris.
[16] Toupin, R.A., (1962). Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414.
[17] Mindlin, R.D., Tiersten, H.F., (1962), effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal 11: 415–448.
[18] Lafontan, X., Pressecq, F., Beaudoin, F., Rigo, S., Dardalhon, M., Roux, J. L., Schmitt, P., Kuchenbecker, J.,Baradat, B., Lellouchi, D., Le-Touze, C., Nicot, J.-M. (2003). The advent of MEMS in space. Microelectronics Reliability 43, 1061-1083.
[19] Zhu Y., D. Espinosa H. (2004). Effect of temperature on capacitive RF MEMS switch performance a coupled-field analysis. Journal of micromechanics and micro engineering, (14) 1270.
[20] Fleck NA., Hutchinson JW. J. Mech Phys Solids 41(12):1825 Livage J (2003) Nat Mater 2:297, (1993).
[21] Cleveringa, HHM., E. Van der Giessen, (1997). Needleman A, Acta Mater 45:3163.
[22] Emery R.D., Lenshek DX., Behin B., Gherasimova M., Povirk GL., (1997). MRS Symp Proc Polycryst Thin Films 361–366.
[23] Leung O. S., Ph.D. dissertation, Stanford, 2001.
[24] Espinosa HD., Prorok BC., Fischer M., Journal of Mechanics and Physics of Solids 51:47–67, 2003.
[25] Emery R.D., Povirk G.L. (2003). Tensile behavior of free-standing gold films. Part I. Coarse-grained films. Acta Mater 51:2067–2078.
[26] Zhang Y., Zhao Y., (2006). Numerical and analytical study on the pull-in instability of micro- structure under electrostatic loading. Joutnal of Sensor and Actuators A, Phyzics. 127:366-7.
[27] Rezazadeh Gh., Khatami F., Tahmasebi A., (2007). Investigation of the Torsion and Bending effects on Static Stability of Electrostatic Torsional Micromirrors. Journal of Microsystem Technologies 13(7):715-22.
[28] Puers, R. and Lapadatu D., 1996. Electrostatic forces and their effects on capacitive mechanical sensors, Journal Sensors Actuators A 56 203-10.
[29] Nguyen, C.T.C., Katehi L.P.B., Rebeiz G.M., )1998(. Micromachined Devices for Wireless Communications, Proc. IEEE 86:1756-68.
[30] Younis, M. I., 2004. Modeling and Simulation of Microelectromechanical Systems in Multi-Physics Fields. Dissertation of Doctor of Philosophy, Virginia Polytechnic Institute and State University.
[31] Ananthasuresh, G.K., R.K. Gupta, S.D. Senturia, 1996. An approach to macromodeling of MEMS for nonlinear dynamic simulation, in: Proceedings of the ASME International Conference of Mechanical Engineering Congress and Exposition (MEMS), Atlanta, GA, pp.401-407.
[32] Krylov S., Maimon R. (2004), Pull-in dynamics of an elastic beam actuated by continuouslydistributed electrostatic force, Journal of Vibration and acoustic, vol 126, pp. 332–342.
[33] Shengli K., Shenjie Z., Zhifeng N., Kai W., (2009). Static and dynamic analysis of micro beams based on strain gradient elasticity, International journal of engineering science, 47, 487-498.
[34] Wang B., Zhou Sh., Zhao J. and Chen X. (2011). Size dependent pull-in instability of electrostatically actuated microbeam-based MEMS, J. Micromechanic and Microengenering, 21 ,027001.
[35] Zhao J., Zhou Sh., Wang B., Wang X., (2011). Nonlinear microbeam model based on strain gradient theory, Journal of Applied Mathematical Modeling, xxx, xx-xx
[36] Park S.K, Gao X.L., (2006). Euler-Bernoulli beam model based on a modified couple stress theory, Journal of Micromechanic and Microengineering 16:2355–9.
[37] Yin L., Qian Q., Wang L., (2011), Size effect on the static behavior of electrostatically actuated micro-beams, Acta Mechanica Sinica, 27(3):445–45.
[38] Kong Sh., Zhou Sh., Nie Zh., Wang K., (2007). The size-dependent frequency of Bernulli-Euler micro-beams, J. International Journal of Engineering Science: 46, 427-437.
[39] Rahaeifard M., Kahrobaiyan M.H., Asghari M., Ahmadian M.T., (2011). Static pull-in analysis of micro cantileveres based on the modified couple stress theory. Sensors and Actuators A: Physical 171 370–374.
[40] Sankar, B.V., (2001). An elasticity solution for functionally graded beams. Compos Sci Technol 61(5):689–96.
[41] Zhong, Z., Yu T., (2007). Analytical solution of a cantilever functionally graded beam. Composites Science and Technology 67:481-8.
[42] Li X.F., (2008). A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. Journal of Sound and Vibration 318:1210–29.
[43] Kapuria, S., Bhattacharyya M., Kumar A.N., (2008). Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation. Journal of Composite Structures 82(3):390-402.
[44] Aydogdu, M., Taskin V., (2007). Free vibration analysis of functionally graded beams with simply supported edges. Mater Des 28(5):1651–6.
[45] Gharib, A., Salehi M., Fazeli S., (2008). Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators. Materials Science and Engineering A 498: 110-4.
[46] Piovan T., Sampaio R., (2008). Vibrations of axially moving flexible beams made of functionally graded materials. Thin-Walled Structures 46:112-21.
[47] Xiang, H.J., Shi Z.F., (2009). Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. European Journal of Mechanics A/Solids 28: 338-46.
[48] Ying J., Lu C.F., Chen W.Q., (2008). Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures 84(3):209–19.
[49] Sina S.A., Navazi H.M., Haddadpour H., (2009). An analytical method for free vibration analysis of functionally graded beams. Material Design 30(3):741–7.
[50] Simsek, M., T. Kocatürk, 2009. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. J Compos Struct 90(4):465-73.
[51] Simsek, M., (2010). Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. J Compos Struct 92:904–17.
[52] Simsek, M., (2010). Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. J Compos Struct 92(10):2532-46.
[53] Simsek, M., (2010). Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design 240:697-705.
[54] Khalili, S.M.R., Jafari A.A., Eftekhari S.A., (2010). A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Composite Structures 92(10):2497-511.
[55] Mahi A., Adda B.E.A., Tounsi A., Mechab I., (2010). An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions. J Compos Struct 92(8):1877-87.
[56] Hasanyan, D.J., Batra R.C., Harutyunyan S., (2008). Pull-in instabilities in functionally graded micro-thermoelectromechanical systems. J Thermal Stresses 31:1006–21.
[57] Jia, X.L., J. Yang, S. Kitipornchai, 2010. Characterization of FGM micro-switches under electrostatic and Casimir forces. Materials Science and Engineering 10:012178.
[58] Asghari, M., Ahmadian M.T., Kahrobaiyan M.H., Rahaeifard M., (2010). On the size-dependent behavior of functionally graded micro-beams. Journal of Materials and Design 31:2324–9.
[59] Kouravand S., Rezazadeh G., Sabet M., and Tahmasebi A., (2006). MEMS Capacitive Micro Thermometer Based on Tip Deflection of Bimetallic Cantilever Beam. Sensors & Transducers Journal, Vol.70, Issue 8, pp.637-644.
[60] Pashapour M., Pesteii S.M., Rezazadeh G., and Kouravand S., (2009). Thermo-Mechanical Behavior of a Bilayer Microbeam Subjected to Nonlinear Electrostatic Pressure. Sensors & Transducers Journal, Vol. 103, Issue 4, pp. 161-170.
[61] Mohammadi-Alasti B., Rezazadeh G., Borgheei A.M, Minaei Saeid, Habibifar R. (2011), On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure, Composite Structures 93 1516–1525.
[62] Rezazadeh G., Keyvani A., Jafarmadar S., (2012). on a MEMS based dynamic remote temperature sensor using transverse vibration of a bi-layer micro-cantilever, measurement 45 (3) 580-589.
[63] Lienhard J. H. , Lienhard J. H. , (2003). A heat transfer textbook, Phlogiston press Cambridge Massachusetts.
[64] Saad M. H. , (2006). Elasticity, theory, Application, and Numerics, Elsevier.
[65] Abbasnejad B., Rezazadeh G., Shabani R., Stability Analysis of a Capacitive FGM Micro-beam Using Modified Couple Stress Theory. Accepted on Acta mechanica solida sinica.
[66] Sadeghian H., Goosen H., Bossche A., Thijsse B., van Keulen F. (2011), On the size-dependent elasticity of silicon nano-cantilevers: impact of defects. Journal of Physics D: Applied Physics, 44(7):07.