فهرست:
فهرست: 3
فهرست جدول ها 5
چکیده. 8
فصل اول.. 10
مقدمه.. 10
فصل دوم. 17
2-1- معرفی نانو نوار گرافن.. 17
2-1-1- روش های تولید گرافن : 24
2-1-1-1- لیتوگرافی پرتو E.. 24
2-1-1-2- روش پوسته پوسته کردن میکرومکانیکی : 25
2-1-1-3- روش رشد همبافته : 26
2-1-1-4- روش رسوب نشانی بخار شیمیایی(CVD) : 26
منبع:
[1] M. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation, New York: Springer-Verlag, 2006.
[2] Gengchiau Liang, Neophytos Neophytou, Dmitri E. Nikonov, and Mark S. Lundstrom, Theoretical study of Graphene Nanoribbon Field-Effect Transistors, Technical Proceedings of NSTI Nanotechnology Conference and Trade Show, vol.1, May 2007.
[3] Gengchiau, Neophytos Neophytou, Dmitri E. Nikonov, and Mark S. Lundstrom, Performance Projections for Ballistic Graphene Nanoribbon Field-Effect Transistors,
IEEE Trans. Electr. Dev. vol. 54, pp. 677-682, 2007.
[4] Fujita M., Wakabayashi K., Nakada K. and Kusakabe K., Peculiar Localized State at Zigzag Graphite Edge, J. Phys. Soc. Jpn. Vol.65, pp. 1920-1923 ,1996.
[5] Nakada K., Fujita M., Dresselhaus G., and Dresselhaus M.S., Edge state in Graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol. 54, pp. 17954–17961, 1996.
[6] Zhixin Guo, Dier Zhang, and Xin-Gao Gong, Thermal conductivity of Graphene nanoribbons, Applied physics letters, vol.95, pp. 163103-163106, 2009.
[7] Azad Naeemi and James D. Meindl, Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects, IEEE Electron Device Letters, vol. 28,pp. 428-431, May 2007.
[8] X. Li, H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, vol. 319, pp. 1229-1232, 2008.
[9] Iang, Q.,et.al., Superconducting Switch Made of Graphene Nanoribbon Junctions, Nanotechnology ,vol.19 , pp.355706-355713, 2008.
[10] Yijian Ouyang, Youngki Yoon, and Jing Guo, Scaling Behaviors of Graphene Nanoribbon FETs: A Three Dimensional Quantum Simulation Study IEEE Transactions on Electron Devices, Vol. 54, pp. 2223-2231, September 2007.
[11] Dr. Lei Liao , Jingwei Bai, Yungchen Lin, Dr. Yongquan Qu, Prof. Yu Huang, and Prof. Xiangfeng Duan, High Performance Top-Gated Graphene Nanoribbon
Transistors Using Zirconium Oxide Nanowires as High-k Gate Dielectrics, Adv Mater.,vol.22, pp. 1941–1945, May 2010 .
[12] S. Luryi, Quantum capacitance devices, Appl. Phys. Lett., vol. 52, pp. 501–503, Feb.1988.
[13] A. Rahman, J. Guo, S Datta, and M. Lundstrom, Theory of ballistic nanotransistors,IEEE Trans. Electron Devices, vol. 50, pp. 1853-1164, Sep. 2003.
[14] M. R. Choudhury et al.., Technology exploration for Graphene nanoribbon FETs, in Proc. Design Automation Conference, pp. 272–277, 2008.
[15] Khairul Alam, Transport and performance of a zero-Schottky barrier and doped contacts graphene nanoribbon transistors, Semicond. Sci. Technol., vol.24, pp, 015007-015022, 2009.
[16] Youngki Yoon, Gianluca Fiori, Seokmin Hong, Giuseppe Iannaccone, and Jing Guo,Performance Comparison of Graphene Nanoribbon FETs with Schottky Contacts and Doped Reservoirs, IEEE Trans. Electron Devices, vol. 55, pp. 2314–2323, Sep. 2008.
[17] M. Y. Han et al., Energy band-gap engineering of graphene nanoribbons,Physical Review Letters, vol. 98, p. 206805-206808, 2007.
[18] D. Basu et al., Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors, Applied Physics Letters, vol. 92, p. 042114, 2008.
[19] Y. Yoon and J. Guo, Effect of edge roughness in graphene nanoribbon transistors,Applied Physics Letters, vol. 91, p. 073103, 2007.
[20] Yijian Ouyang, Youngki Yoon, and Jing Guo, Edge Chemistry Engineering of Graphene Nanoribbon Transistors: A Computational Study, IEEE Trans. Electr. Dev.,
pp. 1-4, 2008.
[21] Yijian Ouyang, Hongjie Dai, and Jing Guo1 Projected Performance Advantage of Multilayer Graphene Nanoribbon as Transistor Channel Material, Nano Res, vol. 3, pp. 8–15, 2010.
[22] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev., Modern Phys., 81 (2009).
[23] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, Science, 306 (2004).
[24] S. Das Sarma, S. Adam, E. H. Hwang and E. Rossi, Rev. Mod. Phys., 83 (2011).
[25] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Room-Temperature All- Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors, Phys.
Rev. Lett. vol. 100, pp. 206803-206807, 2008.
[26] Erjun Kan, Zhenyu Li, and Jinlong Yang, ―Graphene Nanoribbons: Geometric,
Electronic, and Magnetic Properties, Intech, pp. 332-348, March 2011.
[27] ircea R. Stan, Dincer Unluer, Avik Ghosh, and Frank Tseng, ―Graphene Devices, Interconnect and Circuits –Challenges and Opportunities, IEEE Electron Device Letters, vol. 978, pp. 69-72, 2009.
[28] Azad Naeemi and James D. Meindl, Conductance Modeling for Graphene Nanoribbon (GNR) Interconnects, IEEE Electron Device Letters, vol. 28,pp. 428-431, May 2007.
]29[ معظمی گودرزی م - بررسی عوامل موثر بر پایدار سازی نانو صفحات گرافن در سامانه های پلیمری - دانشگاه امیرکبیر – 1389.
]30[ تقی اسکویی م – روند تحقیقات در زمینه گرافن - ماهنامه فناوری نانو - سال هشتم اسفند1388- شماره 12، پیاپى149.
]31[ آقاجانی ت - بررسی رفتار الکترو شیمیایی و کاربرد الکترود طلای اصلاح شده بوسیله گرافن عامل دار شده در لبه ها – ارشد دانشگاه صنعتی شریف – 1391.
[32] Lu, X. K. , M. F. Yu, H. Huang, and R. S. Ruoff. 1999. Tailoring graphite with the goal of achieving single sheets. Nanotechnology.
[33] A. K Geim , K. S. Novoselov , S.V. Morozov , D.Jiang , Y. Zhang , S. V. Dubons , I . V. Grigorieva , A . A . Firsov .2004.Electric field in atomically thin carbon films
[34]Matthew J Alen , Vincent C.Tung , Richard B. Kaner.2010. A review of graphene
[35]Robertj,young,Ian A. Kinloch , Lei Gong , Kostya S. Novoselov.. 2010 The mechanics of graphene nano composites : A review.
[36]Park, S., and R. S. Ruoff. 2009. Chemical methods for the production of graphenes. Nature Nanotechnology.
]37[ موسسه کامپوزیت ایران- نشریه کامپوزیت
[38]Stephan Roche, Nature Nanotechnology 6, 8–9 (2011), oi:10.1038/nnano.2010.262 Published online 23 December 2010
[39] Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov & Hongjie Dai1, Narrow
graphene nanoribbons from carbon nanotubes,Nature, vol. 458, pp. 877-880, 2009.
[40] Norma L. Rangel, Juan C. Sotelo, and Jorge M. Seminario, ―Mechanism of carbon nanotubes unzipping into graphene ribbons, Chemical Physics, vol.131, pp.031105- 031109, 2009.
[41] Andreas Hirsch, ―Unzipping Carbon Nanotubes: A Peeling Method for the Formation of Graphene Nanoribbons, Angew. Chem. Int. Ed.,vol. 48, pp. 6594 6596, 2009.
[42] Alexander Sinitskii, Alexandra A. Fursina, Dmitry V. Kosynkin, Amanda L. Higginbotham,Douglas Natelson, and James M. Tour, Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes, Applied Physics Letters, vol. 95, pp. 253108-253110, 2009.
[43] Sang-Chul Jeon,Dong-Kyu Lee, Young-Su Kim, Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process, Transactions on Electrical and Electronic Materials ,Vol.11, pp. 190-193, August 25, 2010.
[44] Th. Nirschl, “Scaling Properties of the tunneling field effect transistor (TFET):
Device and circuit”Solid-stata Electronic. vol. 50, 2006, PP. 44–51.
[45] K. Boucart, A. M. Ionescu, “Double-Gate Tunnel FET With High-k Gate Dielectric” IEEE Trans. Electron Devices, vol. 54, NO. 7, JULY 2007 PP. 1725- 1733.
[46] P.-F. Wang “Complementary tunneling transistor for low power application”
Solid-stata Electronic. vol. 48, 2004, PP. 2281-2286.
[47] K. Boucart, A. M. Ionescu, “Double Gate Tunnel Fet with ultrathin silicin body
and high-k gate dielectric” Solid-State Device Research Conference, 2006, PP.383-
386.
[48] K. K. Bhuwalk, S. Sedlmaier, “Vertical Tunnel Field-Effect Transistor” IEEE
Trans. Electron Devices, vol. 51, NO. 2, FEBRUARY 2004. PP.279-282.
[49] K. K. Bhuwalk andbook, “A simulation Approach to Optimize the Elecrical Parameters of a Vertical Tunnel FET ” IEEE Trans. Electron Devices, vol. 52, NO.
7 JULY 2005. PP 1541-1547.
[50] Th. Nirschl, “The Tunneling Field Fffect Transistor (TFET) as an Add-on for Ultra-Low-Voltage Analog and Digital Processes” Technical Digest - International
Electron Devices Meeting, IEDM,2004, PP.195-198.
[51] Geim A. K., Novoselov K. S., 2007, The rise of graphene, Nature Materials, vol: 6, pp: 183–191.
[52] Erjun Kan, Zhenyu Li, Jinlong Yang, 2011, Graphene Nanoribbons: Geometric, Electronic, and Magnetic Properties, Intech, pp: 332-348.
[53] Iang Q. et.al., 2008, Superconducting Switch Made of Graphene–Nanoribbon Junctions, Nanotechnology ,vol:19 , pp:355706-355713.
[54] Rosales L., 2008, Transport Properties of Graphene Nanoribbon Heterostructures, Microelectronics, vol:39, pp: 537–540.
[55] Qimin Yan, Bing Huang, Jie Yu, Fawei Zheng, Ji Zang,Jian Wu, Bing-Lin Gu, Feng Liu, Wenhui Duan, 2007, Intrinsic Current-Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping, Nano Lett, Vol: 7, pp:1469-1473.
[55] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995)
[56] Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, and Mark S.
Lundstrom “nanoMOS 2.5: A Two -Dimensional Simulator for Quantum Transport in
Double-Gate MOSFETs,” IEEE Trans. Electron. Dev., Vol. 50, pp. 1914-1925, 2003.
[57] Anisur Rahman, Avik Ghosh, and Mark Lundstrom, “Assessment of Ge n-MOSFETs by Quantum Simulation,” to be presented at the Intern. Electron Devices Meeting, Washington, D.C., Dec. 2003.
[58] J. Guo, S. Datta and M. Lundstrom, “A numerical study of scaling issues for Schottky barrier carbon nanotube transistors,” in press, IEEE Trans Electron Dev., 2003.
[59] P. Damle, T. Rakshit, M. Paulsson and S. Datta, “Current-voltage characteristics of
molecular conductors: two versus three terminal,” IEEE Transactions on Nanotechnology, Vol. 1, pp. 145-153, 2002.
[60] S. Datta “Nanoscale Device Modeling: the Green’s Function Method” Superlattices and Microstructures, vol. 28, pp. 253-278, 2000.
[61] S. Datta, “The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction,” pp. 703-706, IEDM Tech. Digest, 2002.
[62] Jing Guo, Supriyo Datta, and Mark Lundstrom "Towards Multi-Scale Modeling of Carbon Nanotube Transistors,"
[63] J. Tersoff, “Schottky barrier heights and the continuum of gap states,” Phys. Rev. Lett., vol. 52, 465-568, 1984.
[64] Zoheir Kordrostami and Mohammad Hossein Sheikhi (2010). Fundamental Physical Aspects of Carbon Nanotube Transistors, Carbon Nanotubes, Jose Mauricio Marulanda (Ed.), ISBN: 978-953-307-054-4, InTech,
[65] Guo, Jing, Modeling of graphene nanoribbon devices, Nanoscale, 2012,
Volume="4", issue ="18", pages ="5538-5548", "The Royal Society of Chemistry", 10.1039/C2NR31437A",
[66] Pei Zhao, Jyotsna Chauhan, and Jing Guo*, Computational Study of Tunneling Transistor Based on Graphene Nanoribbon, Department of Electrical and Computer Engineering, UniVersity of Florida, GainesVille, Florida 32611-6130
Received October 20, 2008; Revised Manuscript Received December 20, 2008.
[67] Youngki Yoon1,a, Gianluca Fiori2,b, Seokmin Hong1, Giuseppe Iannaccone2, and Jing Guo1,Performance Comparison of Graphene Nanoribbon FETs with Schottky Contacts and Doped Reservoirs,1 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA, 2 Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, Università di Pisa, Via Caruso 16, I-56122 Pisa, Italy
[68] See for example articles in, IEEE Transactions on Electron Devices, Special Issue on Computational Electronics: New Challenges and Directions, edited by M. S. Lundstrom, R. W. Dutton, D. K. Ferry, and K. Hess (2000).
[69] See for example, C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath, Science 285, 391 (1999); J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).
[70] A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET, R Yousefi, M Shabani, M Arjmandi, SS Ghoreishi
Superlattices and Microstructures 60, 169-178, 201
.