فهرست:
فهرست جدولها د
فهرست شکلها ه
فصل 1- مقدمه 1
1-1- پیشگفتار 1
1-2- تاریخچه ی سلول های خورشیدی.. 1
1-3- انواع سلول های خورشیدی.. 2
1-3-1- نسل اوّل سلول های خورشیدی (سلول های کریستالی سیلیکون) 2
1-3-1-1- فرآیند رشد کریستال های نیمه هادی ها 2
1-3-1-2- سلول های خورشیدی کریستالی سیلیکونی.. 4
1-3-2- نسل دوم سلول های خورشیدی (سلول های لایه نازک) 4
1-3-2-1- سلول های خورشیدی لایه نازک سیلیکون.. 5
1-3-2-2- سلول های خورشیدی لایه نازک کلکوپریت... 5
1-3-2-3- سلول های خورشیدی لایه نازک کادمیم تلوراید. 6
1-3-2-4- سلول های خورشیدی لایه نازک ارگانیک... 7
1-3-3- نسل سوم سلول های خورشیدی.. 8
1-3-3-1- سلول های خورشیدی با پیوند چندگانه. 9
1-3-3-2- سلول های خورشیدی با طیف های ورودی چندگانه. 12
1-3-3-2-1- سلول ترموفوتوولتی 12
1-3-3-2-2- سلول ترموفوتونی 12
1-3-3-3- سلول های خورشیدی با مسیرهای جذب چندگانه. 13
1-3-3-4- سلول های خورشیدی با سطوح انرژی چندگانه. 14
1-3-3-5- سلول های خورشیدی با دماهای چندگانه. 14
1-3-4- سلول های خورشیدی نانوساختار 15
1-3-5- استفاده از نانوسیم ها در سلول های خورشیدی.. 15
1-3-5-1- معرفی نانوسیم 15
1-3-5-2- ویژگی های الکتریکی و نوری نانوسیم. 16
1-3-5-3- سلول های خورشیدی مبتنی بر نانوسیم. 17
1-3-6- استفاده از نانولوله در سلول های خورشیدی.. 20
1-3-6-1- معرفی نانولوله 20
1-3-6-2- ویژگی های الکتریکی و نوری نانولوله ها 21
1-3-6-3- سلول های خورشیدی مبتنی بر نانولوله. 22
1-4- استفاده از گرافن در سلول های خورشیدی.. 25
1-5- ساختار پایاننامه. 25
فصل 2- گرافن: ویژگی ها، کاربردها و روش های ساخت... 26
2-1- مقدمه 26
2-2- ویژگی های گرافن.. 26
2-2-1- ساختار اتمی گرافن.. 26
2-2-2- ویژگی های الکتریکی والکترونیکی گرافن.. 27
2-2-2-1- کریستال دو بعدی 27
2-2-2-2- ساختار نواری مخروطی.. 27
2-2-2-3- روش های ویژه جهت ایجاد گاف انرژی.. 29
2-2-2-4- وابستگی جرم سیکلوترون به جذر چگالی حامل.. 29
2-2-2-5- حامل های بار بدون جرم (فرمیونهای دیراک) 30
2-2-2-6- حداقل رسانایی غیر صفر. 31
2-2-2-7- ترابرد بالیستیک 31
2-2-2-8- اثر هال کوانتومی غیر معمول و پدیده ی فاز بری.. 33
2-2-2-9- اثر میدان آمبایپلار ( آلایش الکتروستاتیک ) 33
2-2-3- ویژگی های نوری گرافن.. 34
2-3- روش های ساخت گرافن.. 35
2-4- نانو نوارهای گرافن.. 36
فصل 3- روش تابع گرین غیرتعادلی و کاربرد آن در شبیه سازی ادوات نیمه هادی.. 39
3-1- مقدمه 39
3-2- مفهوم ریاضی تابع گرین.. 39
3-3- روش تابع گرین غیرتعادلی(NEGF) 41
3-3-1- مفاهیم مقدماتی.. 41
3-3-2- استفاده از NEGF برای شبیه سازی ترابرد بالیستیک(بدون تلفات) 44
3-3-3- استفاده از روش NEGF در شبیه سازی ترابرد غیر بالیستیک(تلفاتی) 46
3-3-3-1- درهمکنش الکترون- الکترون.. 46
3-3-3-2- درهمکنش های الکترون- فونون و الکترون-فوتون.. 47
3-3-4- پایه های نمایش در روش NEGF (فضای واقعی و فضای مود) 49
فصل 4- روش شبیه سازی.. 50
4-1- مقدمه 50
4-2- فلوچارت کامل شبیه سازی.. 50
4-3- تشکیل همیلتونین.. 52
4-3-1- همیلتونین در فضای حقیقی.. 53
4-3-2- تبدیل همیلتونین به نمایش در فضای مود. 54
4-4- خود-انرژی ناشی از اتصالات... 57
4-5- خود-انرژی ناشی از درهمکنش الکترون- فوتون.. 58
4-6- چالش های محاسباتی در شبیه سازی عددی.. 59
4-7- راه حل های ممکن جهت عبور از چالش های محاسباتی.. 60
فصل 5- نتایج شبیه سازی.. 61
5-1- مقدمه 61
5-2- نتایج شبیه سازی.. 61
فصل 6- پیشنهادات... 64
6-1 بررسی و مطالعه ی دقیق بر روی راه حل های شبیه سازی عددی سلول های خورشیدی نانوساختار با استفاده از روش NEGF و بهره بردن از تکنیک های تسریع محاسبات از جمله برنامه نویسی موازی به منظور دست یابی به نتایج قابل قبول علمی 64
6-2 شبیه سازی سلول خورشیدی مبتنی بر گرافن با استفاده از ساختار ابر-شبکه (به روشه ای مختلف) 64
6-3 طراحی مدل جدیدی از IB-QD-SC با استفاده از ساختار ابر شبکه ی گرافن.. 64
6-4 شبیه سازی سلول های خورشیدی و آشکارسازهای نوری پلاسمونیک با استفاده از گرافن و طلا (با کمک Comsol) 64
6-5 طراحی سلول خورشیدی با جذب نور بسیار بالا به وسیله ی گرافن چند لایه به همراه لایه های میانی شفاف (مثلا H-BN) 64
فهرست مراجع.. 65
منبع:
ttp://www.irses.ir
[1] . http://en.wikipedia.org/wiki/Solar_cell
[1] . بن. جی. استریتمن، غلامحسن روئین تن و سعید صمدی(مترجم)، « فیزیک الکترونیک»، انتشارات دانشگاه علم و صنعت ایران، چاپ ششم، 1387 .
[1] . Jef Poortmans and Vladimir Arkhipov, “Thin film solar cells fabrication, characterization and applications,” John Wiley & Sons, Ltd, IMEC, Leuven, Belgium, 2006.
[1] . Peter Wurfel, “Physics of solar cell/ from principle to new concepts”, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
[1] . Neelkanth G. Dhere , “Recent developments in thin film solar cells ,” Thin Solid Films, 193/194 (1990) 757-768 .
[1] . http://www.Sovox.com
[1] . R.W. Miles, K.M. Hynes, I. Forbes “Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues,” Progress in Crystal Growth and Characterization of Materials
51 (2005) 1-42.
[1] . D.J. Friedman, “Progress and challenges for next-generation high-efficiency multijunction solar cells,” Current Opinion in Solid State and Materials Science 14 (2010) 131–138.
[1] . K.R. Catchpole , K.L. Lin, M.A. Green, A.G. Aberle, R. Corkish, J. Zhao, A. Wang, “Thin semiconducting layers as active and passive emitters for thermophotonics and thermophotovoltaics,” Solar Energy 76 (2004) 251–254.
[1] . Sung Jin Kim, “Nanostructured Photovoltaic Devices for Next Generation Solar Cell,” Ph.D. Dissertation, Department of Electrical Engineering, University at Buffalo, the State University of New York, 2008.
[1] . C. B. Honsberg and A.M. Barnett, "Paths to Ultra-High Efficiency (>50% Efficient) Photovoltaic Devices", 20th European Photovoltaic Solar Energy Conference, 6 - 10 June 2005, Barcelona, Spain.
[1] . C.B. Honsberg, A.M. Barnett, D. Kirkpatrick, "Nanostructured Solar Cells for High Efficiency Photovoltaics", 4th World Conference on Photovoltaic Energy Conversion, Hawaii, May 7 - 12, 2006.
[1] . www.en.wikipedia.org/wiki/nanowire
[1] . Winston Chern, Ki Jun Yu, Debashis Chanda, Jae Cheol Shin, John A. Rogers, and Xiuling Li “Ordered Silicon Nanowire Array Based Solar Cells Produced by Metal Assisted Chemical Etching,” IEEE, 2010.
[1] . Ke Sun, Student Member, IEEE, Alireza Kargar, Student Member, IEEE, Namsoek Park, Kristian N. Madsen, Student Member, IEEE, Perry W. Naughton, Timothy Bright, Yi Jing, and Deli Wang, “Compound Semiconductor Nanowire Solar Cells,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 17, NO. 4, JULY/AUGUST 2011.
[1] . Zhiyong Fan, Daniel J. Ruebusch, Asghar A. Rathore, Rehan Kapadia, Onur Ergen, Paul W. Leu, and Ali Javey, “Challenges and Prospects of Nanopillar-Based Solar Cells,” Nano Res (2009) 2: 829 843.
[1] . Thomas Stelzner, Vladimir A. Sivakov, Andreas Berger, Björn Hoffmann, Stefaan De Wolf, Christophe Ballif, Dongfeng Zhang, Johann Michler, and Silke H. Christiansen, “Structural, Optical, and Electrical Properties of Silicon Nanowires for Solar Cells,” IEEE 2010.
[1] . Dante F. DeMeoa, Samuel MacNaughtona, Sameer Sonkusale, and Thomas E. Vandervelde, “Metal-Oxide Coaxial Nanowire Photovoltaic Cells,” ISDRS, Student Paper , 2011.
[1] . Jitendra Kumar, S. K. Manhas, Dharmendra Singh, Ramesh Vaddi, “Optimization of Vertical Silicon Nanowire based Solar Cell using 3D TCAD Simulation,” IEEE 2011.
[1] . Dr. Michael J. O’Connell, “Carbon Nanotubes Properties and Applications”, Chapter 4 : Carbon nanotube electronics and devices, CRC Press, Taylor & Francis Group, Published in 2006.
[1] . Pasquier, Aurelien Du; Unalan, H.E.; Kanwal, Alokik; Miller, Steve; Chhowalla, Manish, "Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells," Applied Physics Letters , vol.87, no.20, pp.203511,203511-3, Nov 2005.
[1] . Rowell, Michael W.; Topinka, Mark A.; McGehee, M.D.; Prall, Hans-Jurgen; Dennler, Gilles; Sariciftci, N.S.; Hu, Liangbing; Gruner, George, "Organic solar cells with carbon nanotube network electrodes," Applied Physics Letters , vol.88, no.23, pp.233506,233506-3, Jun 2006
[1] . Van De Lagemaat, Jao; Barnes, T.M.; Rumbles, G.; Shaheen, Sean E.; Coutts, Timothy J.; Weeks, C.; Levitsky, I.; Peltola, J.; Glatkowski, P., "Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode," Applied Physics Letters , vol.88, no.23, pp.233503,233503-3, Jun 2006.
[1] . Hwang, S.; Moon, J.; Lee, S.; Kim, D.-H.; Lee, D.; Choi, W.; Jeon, M.; , “Carbon nanotubes as counter electrode for dye-sensitized solar cells,” Electronics Letters, vol.43, no.25, pp.1455-1456, Dec.6 2007
[1] . Barnes, T.M.; Wu, X.; Zhou, J.; Duda, A.; Van De Lagemaat, J.; Coutts, T. J.; Weeks, C.L.; Britz, D. A.; Glatkowski, P., "Single-wall carbon nanotube networks as a transparent back contact in CdTe solar cells," Applied Physics Letters , vol.90, no.24, pp.243503,243503-3, Jun 2007.
[1] . Lee, Wonjoo; Jungwoo Lee; Lee, Sangjin; Whikun Yi; Han, Sung-Hwan; Cho, Byung-Won, "Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes," Applied Physics Letters , vol.92, no.15, pp.153510,153510-3, Apr 2008.
[1] . Lee, Tao-Hua; Sun, Dazhi; Xi Zhang; Sue, Hung-Jue; Cheng, Xing, "Solid-state dye-sensitized solar cell based on semiconducting nanomaterials," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures , vol.27, no.6, pp.3073,3077, Nov 2009.
[1] . Liu, Liming; Stanchina, Wiliam E.; Li, Guangyong; , “Effects of semiconducting and metallic single- walled carbon nanotubes on performance of bulck heterojunction organic solar cells,” Applied Physics Letters , vol.94, no.23, pp.233309-233309-3, Jun 2009.
[1] . Levitsky, I.A., "Hybrid Solar Cells Based On Carbon Nanotubes and Nanoporous Silicon [Nanoproducts]," Nanotechnology Magazine, IEEE , vol.4, no.4, pp.24,25, Dec. 2010.
[1] . Barnes, T.M.; Bergeson, Jeremy D.; Tenent, Robert C.; Larsen, Brian A.; Teeter, Glenn; Jones, Kim M.; Blackburn, Jeffrey L.; Van de Lagemaat, Jao, "Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer," Applied Physics Letters , vol.96, no.24, pp.243309,243309-3, Jun 2010.
[1] . Mallajosyula, A.T.; Iyer, S. S K; Mazhari, B., "Role of single walled carbon nanotubes in improving the efficiency of poly-(3-hexylthiophene) based organic solar cells," Journal of Applied Physics , vol.108, no.9, pp.094902,094902-9, Nov 2010.
[1] . Zhongrui Li; Saini, Viney; Dervishi, Enkeleda; Kunets, Vasyl P.; Zhang, Jianhui; Yang Xu; Biris, Alexandru R.; Salamo, Gregory J.; Biris, A.S., "Polymer functionalized n-type single wall carbon nanotube photovoltaic devices," Applied Physics Letters , vol.96, no.3, pp.033110,033110-3, Jan 2010.
[1] . Kang, M.; Han, Y.; Choi, H.; Jeon, M., "Two-step heat treatment of carbon nanotube based paste as counter electrode of dye-sensitised solar cells," Electronics Letters , vol.46, no.22, pp.1509,1510, October 28 2010.
[1] . Mohseni, P.K.; Lawson, G.; Adronov, A.; LaPierre, R.R., "Hybrid GaAs-Nanowire–Carbon-Nanotube Flexible Photovoltaics," Selected Topics in Quantum Electronics, IEEE Journal of , vol.17, no.4, pp.1070,1077, July-Aug. 2011.
[1] . Del Gobbo, S.; Castrucci, P.; Scarselli, M.; Camilli, L.; De Crescenzi, M.; Mariucci, L.; Valletta, A.; Minotti, A.; Fortunato, G., "Carbon nanotube semitransparent electrodes for amorphous silicon based photovoltaic devices," Applied Physics Letters , vol.98, no.18, pp.183113,183113-3, May 2011.
[1] . Saini, V.; Zhongrui Li; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, J.; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; Biris, Alexandru R.; Salamo, Gregory J.; Viswanathan, Tito; Biris, A.S., "Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions," Journal of Applied Physics , vol.109, no.1, pp.014321,014321-6, Jan 2011.
[1] . Kyaw, A. K K; Tantang, H.; Wu, T.; Ke, L.; Peh, C.; Huang, Z. H.; Zeng, X.T.; Demir, H.V.; Zhang, Q.; Sun, X.W., "Dye-sensitized solar cell with a titanium-oxide-modified carbon nanotube transparent electrode," Applied Physics Letters , vol.99, no.2, pp.021107,021107-3, Jul 2011.
[1] . Jia, Yi; Li, Peixu; Gui, Xuchun; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Dehai Wu; Zhang, Luhui; Anyuan Cao; Ying Xu, "Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency," Applied Physics Letters , vol.98, no.13, pp.133115,133115-3, Mar 2011.
[1] . Stylianakis, Minas M.; Kymakis, Emmanuel; , “Efficiency enhancement of organic photovoltaic by addition of carbon nanotubes into both active and hole transport layer,” Applied Physics Letters , vol.100, no.9, pp.093301-093301-5, Feb 2012.
[1] . Chen, Wenchao; Seol, Gyungseon; Rinzler, Andrew G.; Guo, Jing, "Carrier dynamics and design optimization of electrolyte-induced inversion layer carbon nanotube-silicon Schottky junction solar cell," Applied Physics Letters , vol.100, no.10, pp.103503,103503-4, Mar 2012.
[1] . Somani, Savita P.; Somani, Prakash R.; Umeno, M.; Flahaut, E., "Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes," Applied Physics Letters , vol.89, no.22, pp.223505,223505-3, Nov 2006.
[1] . Somani, Prakash R., "Pressure sensitive multifunctional solar cells using carbon nanotubes," Applied Physics Letters , vol.96, no.17, pp.173504,173504-3, Apr 2010.
[1] . Miller, Anthony J.; Hatton, Ross A.; Silva, S. R P, "Interpenetrating multiwall carbon nanotube electrodes for organic solar cells," Applied Physics Letters , vol.89, no.13, pp.133117,133117-3, Sep 2006.
[1] . Miller, Anthony J.; Hatton, Ross A.; Chen, G. Y.; Silva, S. Ravi P., "Carbon nanotubes grown on In2O3:Sn glass as large area electrodes for organic photovoltaics," Applied Physics Letters , vol.90, no.2, pp.023105,023105-3, Jan 2007.
[1] . Li, Fusjan; Cho, Sung Hwan; Son, Dong Ick; Kim, Tae Whan; Lee, Sun-Kyun; Cho, Yong-Hoon; Jin, Sungho; , “UV photovoltaic cells baced on conjugated ZnO quantum dot/multiwall carbon nanotube heterostructures,” Applied Physics Letters , vol.94, no.11, pp.111906-111906-3, Mar 2009.
[1] . Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.; , “Monolithic parallel tandem organic photovoltaic cell with transparent carbon nanotube interlayer,” Apllid Physics
Letter , vol.94, no.11, pp.113506-113506-3, Mar 2009.
[1] . Khatri, I.; Adhikari, S.; Aryal, Hare Ram; Soga, T.; Jimbo, T.; Umeno, Masayoshi, "Improving photovoltaic properties by incorporating both single walled carbon nanotubes and functionalized multiwalled carbon nanotubes," Applied Physics Letters , vol.94, no.9, pp.093509,093509-3, Mar 2009.
[1] . Siriroj, Sumeth; Pimanpang, Samuk; Towannang, Madsakorn; Maiaugree, Wasan; Phumying, Santi; Jarernboon, Wirat; Amornkitbamrung, V., "High performance dye-sensitized solar cell based on hydrothermally deposited multiwall carbon nanotube counter electrode," Applied Physics Letters , vol.100, no.24, pp.243303,243303-4, Jun 2012.
[1] . Galina V. Dubacheva, Chih-Kai Liang, Dario M.Bassani, et. al., "Functional monolayers from carbon nanostructures – fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy conversion", Elsevier Coordination Chemistry Reviews 256 (2012) 2628– 2639.
[1] . H. Bi, F. Huang, J. Liang, X. Xie, M. Jiang, Adv. Mater. 23 (2011) 3202–3206.
[1]. Y. Wang, Xiaohong Chen, Yulin Zhong, Furong Zhu, Kian Ping Loh, et. al., "Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices" Appl. Phys. Lett. 95 (2009) 063302.
[1] . Y. Wang, S.W. Tong, X.F. Xu, B. Özyilmaz, K.P. Loh, Adv. Mater. 23 (2011) 1514–1518.
[1] . P. Hyesung, A.R. Jill, K. Ki Kang, B. Vladimir, K. Jing, Nanotechnology 21 (2010) 505204.
[1] . M. Cox, A. Gorodetsky, B. Kim, K.S. Kim, Z. Jia, P. Kim, C. Nuckolls, I. Kymissis, et. al., "Single-Layer Graphene Cathode For Organic Photovoltaics "Appl. Phys. Lett. 98 (2011) 123303.
[1] . S. Sun, L. Gao, Y. Liu, at. al., "Enhanced Dye-Sensitized Solar Cell Using Graphene- Tio2 Photoanode Prepared By Heterogeneous Coagulation", Appl. Phys. Lett. 96 (2010), 083113/083111– 083113/083113.
[1] . Y.-B. Tang, C.-S. Lee, J. Xu, Z.-T. Liu, Z.-H. Chen, Z. He, Y.-L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.-M. Cheng, W.-J. Zhang, I. Bello, S.-T. Lee, ACS Nano 4 (2010) 3482–3488.
[1] . N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano 4 (2010) 887–894.
[1] . C.X. Guo, G.H. Guai, C.M. Li, Adv. Energy Mater. 1 (2011) 448–452.
[1] . F. Gong, H. Wang, Z.-S. Wang, Phys. Chem. Chem. Phys. 13 (2011) 17676–17682.
[1] . H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon, J. Mater. Chem. 21 (2011) 7548–7551.
[1] . A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183–191.
[1] . X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Adv. Mater. 22 (2010) 2743–2748.
[1] . L. Lancellotti, T. Polichetti, F. Ricciardella, O. Tari, S. Gnanapragasam, S. Daliento, G. Di Francia, Graphene applications in Schottky barrier solar cells, Thin Solid Films (2012), doi: 10.1016/j.tsf.2012.09.040
[1] . Y. Ye, Y. Dai, L. Dai, Z.-J. Shi, N. Liu, F. Wang, L. Fu, R.-M. Peng, X.-N. Wen, Z.-J. Chen, Z.-F. Liu, G.-G. Qin, ACS Appl. Mater. Interfaces 2 (2010) 3406–3410.
[1] . Y. Ye, L. Gan, L. Dai, Y. Dai, X. Guo, H. Meng, B. Yu, Z. Shi, K. Shang, G. Qin, Nanoscale 3 (2011) 1477–1481.
[1] . L. Zhang, L. Fan, Z. Li, E. Shi, X. Li, H. Li, C. Ji, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao, Nano Res. 4 (2011) 891–900.
[1] . T.J. Echtermeyer, L. Britnell, P.K. Jasnos, A. Lombardo, R.V. Gorbachev, A.N. Grigorenko, A.K. Geim, A.C. Ferrari, K.S. Novoselov, et. al., "Strong plasmonic enhancement of photovoltage in graphene ", Nature(2011).
[1] . Xiaochang Miao, Sefaattin Tongay, Maureen K. Petterson, Kara Berke, Andrew G. Rinzler, Bill R. Appleton, Arthur F. Hebard, et. al., "High Efficiency Graphene Solar Cell By Chemical Doping", ACS Nano Lett (2012), 12, 2745−2750.
[1] . Zixu Zhu, Sachit Grover, Kendra Krueger, Garret Moddel, at. al., "Optical Rectenna Solar Cells Using Graphene Geometric Diodes", IEEE(2011) ,2120-2122.
[1] . S. Basu, P. Bhattacharyya, “recent developments on graphene and graphene oxide based solid state gas sensors”, Sens. Actuators B: Chem. (2012).
[1] . K. S. Novoselov, “Nobel Lecture: Graphene: Materials in the Flatland”, Review of modern physics, Vol. 83, (2011).
[1]. X. Yang, “the rise of graphene”, student paper, Link: http://www.seas.upenn.edu/~yxiang/courses/ECE%20212A.pdf .
[1]. Yanwu Zhu, Shanthi Murali, Weiwei Cai, Xuesong Li, Ji Won Suk, Jeffrey R. Potts, and Rodney S. Ruoff, “graphene and graphene oxide: synthesis, properties, and applications”, Adv. Mater. 22,3906–3924, (2010).
[1] . A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene”, REVIEWS OF MODERN PHYSICS, v 81, (2009).
[1]. C. soldano, A. Mahmood, E. Dujardin, “production, properties and potential of graphene” CARBON 48, 2127 – 2150, ( 2010).
[1] . V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, “graphene based materials: past, present, and future”, Progress in Materials Science 56, 1178–1271, (2011).
[1] . Wallace, P. R. "The band theory of graphite." Physical Review 71.9 (1947): 622.
[1] . www.wikipedia.org.
[1] . A. Venugopal, L. Colombo, E. M. Vogel, “issues with characterizing transport properties of graphene field effect transistors”, Solid State Communications, 152, 1311–1316, (2012).
[1] . A. C. Neto, F. Guinea, N. M. Peres, “Drawing conclusions from graphene”, Physics World, www.physicsweb.org, November (2006).
[1] . S. Sahoo, “quantum hall effect in graphene : status and prospects”, Indian Journal of Pure & Applied Physics, Vol. 49, pp. 367-371, june (2011).
[1] . A. K. Geim, K. S. Novoselov, “the rise of graphene”, nature materials, Vol. 6, March (2007).
[1]. E. Ahmadi, A. Asgari, K. Ahmadiniar, “The optical responsivity in IR-photodetector based on armchair graphene nanoribbons with p–i–n structure”, Superlattices and Microstructures, Vol. 52, pp. 605–611, (2012).
[1]. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres & A.K. Geim, “Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene”, Science, Vol.32, no. 5881 p. 1308 , 6 June (2008).
[1] . www.en.wikipedia.org/ fine structure constant.
[1] . Wimmer, Michael, et al. "Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection." Physical review letters 100.17 (2008): 177207.
[1]. Youdang Wu, “Simulation of graphene electronic devices” , Ph.D. Dissertation, School of Electronic, Electrical and Computer Engineering, University of Birmingham, Birmingham. 2011.
[1]. L. Mohammadzadeh, A. Asgari, S.Shojaei, and E. Ahmadi, “Theoretical calculation of excitonic binding energies and optical absorption spectra for Armchair graphene nanoribbons”, Eur. Phys. J. B , 249–253 (2011).
[1]. J. Guo, M. Lundstrom, A. Javey, J. Kong, “device simulation of SWNT-FETs”, Carbon Nanotube Electronics, Springer, (2007).
[1]. www.wikipedia.org
[1]. Leo P Kadanoff_ Gordon Baym. “Quantum statistical mechanics: Green's function methods in equilibrium and nonequilibrium problems” .New York, W.A. Benjamin (1962).
[1]. P. C. Martin, J. Schwingerr, “Theory of Many-Particle Systems. I”, Physical Review, Vol. 115, N. 6, September 15 (1959).
[1]. S. Datta, “Electronic transport in mesoscopic systems”, Cambridge University Press, Cambridge, (1995).
[1]. S. Datta, “Quantum Transport: atom to transistor”, Cambridge University Press, Cambridge, (2005).
[1]. Q. Gao, J. Guo, “Quantum mechanical simulation of grapheme photodetectors”, Journal of Applied Physics, Vol. 112, 084316 (2012).
[1]. P. Zhao, J. Guo, “Modeling edge effects in Graphene Nanoribbon Field-effect Transistors with real and mode space methods”, Journal of Applied Physics 105.3, 34503-034503 (2009) .
[1]. P. Zhao, M. Choudhury, K. Mohanram, J. Guo, “Computational Model of Edge Effects in Graphene Nanoribbon Transistors”, Nano Res Vol. 1, pp. 395-402, (2008).
[1]. M. Pourfath, H. Kosina, “Computational study of carbon-based electronics”, J Comput Electron, Springer, (2009).
[1] . N. Cavassilas, F. Michelini, M. Bescond, “modeling of nanoscale solar cells: the green's function formalism”, Journal of Renewable and Sustainable Energy, 6, 011203, (2014).
[1]. U. Aeberhard, “Theory and simulation of quantum photovoltaic devices based on the non-equilibrium green's function formalism”, J Comput Electron, Vol. 10, pp. 394-413, (2011).
[1]. A. Buin, A. Verma, S. Saini, “Optoelectronic response calculations in the framework of k.p coupled to non-equilibrium green's functions for one-dimensional systems in the ballistic limit”, Journal of Applied Physics, 114, 033111, (2013).
[1]. J. Guo, Muhammad A. Alam, and Youngki Yoon, “Theoretical investigation on photoconductivity of single intrinsic carbon nanotubes”, Applied physics letters 88.13, (2006).