فهرست:
فصل اول: آشنایی با برج جدا کننده دی بوتانایزر ،تشریح ورودی وخروجی ،جمع آوری داده ها
1
1-1- مقدمه
1
1-2- فرایند جداسازی و نگاهی به گذشته
1-3- مروری بر کارهای گذشته
3
4
1-4- تشریح یک برج جداکننده
6
1-5- برج دی بوتانایزر در پالایشگاه گازی پارس جنوبی
8
فصل دوم: شناسایی به روش های خطی و غیرخطی
2-1- مقدمه
11
11
2-2- شناسایی به روش های خطی
11
2-2-1- شناسایی خطی به روش پارامتری
11
2-2-1-1- شناسایی به روش ARX
12
2-2-1-2- شناسایی به روش OE
14
2-2-1-3- شناسایی به روش BJ
15
2-2-2- شناسایی خطی به روش مبتنی بر تحلیل زیر فضا
16
2-3- شناسایی به روش های غیر خطی
20
2-3-1- شناسایی به روش ARX غیر خطی(NLARX )
20
2-3-2- شناسایی به روش همرشتاین-وینر (NLHW )
21
2-3-3- شناسایی به روش شبکه های عصبی
23
(MLP) 2-3-3-1- پرسپترون چند لایه
23
2-3-3-2- آموزش به روش لونبرگ-مارکورت
25
2-3-4- شناسایی به روش فازی-عصبی
26
2-3-4-1- دسته بندی یا clustering
27
2-3-4-2- دسته بندی تفریقی
28
2-3-4-3- تابع عضویت
29
2-4- جمع بندی
عنوان
30
صفحه
فصل سوم: پیاده سازی روش های شناسایی خطی و غیر خطی بر روی سیستم دی بوتانایزر
31
3-1- مقدمه
31
3-2- جمع آوری داده ها برای شناسایی سیستم دینامیکی دی بوتانایزر
3-2-1- متغیرهای فیزیکی و ابزاردقیق
32
32
3-2-2- نمونه برداری و نمودارگیری از متغیرهای برج دی بوتانایزر
34
3-3- پیاده سازی روش شناسایی ARX
37
3-4- پیاده سازی روش شناسایی OE
39
3-5- پیاده سازی روش شناسایی BJ
41
3-6- پیاده سازی روش شناسایی N4SID
44
3-7- پیاده سازی روش شناسایی NLARX
47
3-8- پیاده سازی روش شناسایی NLHW
48
3-9- پیاده سازی شناسایی به روش شبکه های عصبی
50
3-10- پیاده سازی شناسایی به روش عصبی- فازی
3-11- جمع بندی
53
56
فصل چهارم: روش فازی- عصبی بسط یافته
4-1-مقدمه
57
57
4-2- سیستم های فازی نوع- 2
57
4-3- دسته بندی به روش کاهشی، فازی نوع -2
58
4-4- تعیین شعاع همسایگی تاثیر متقابل توابع عضویت
61
4-5- پیاده سازی شناسایی به روش فازی- عصبی بسط یافته
4-6- جمع بندی
65
68
فصل پنچم: بحث، نتیجه گیری و پیشنهادات
69
منابع
71
منبع:
[1] Chang, R. General chemistry. McGraw-Hill, 2006
[2] M.Karrari, System identification. Tehran: Amirkabir industrial university, 1388
[3] Abdullah, Z., N. Aziz and Z. Ahmad. Nonlinear modelling application in distillation column. Chemical Product and Process Modeling 2(3-12),2007.
[4] Skogestad, S. Dynamics and control of distillation columns - A critical survey. In IFAC-SymposiumDYCORD, Maryland (April-1992).
[5] Forbes, R. Short History of the Art of Distillation from the Beginnings Up to the Death of Cellier Blumenthal (Second Edition ed.). Brill Academic Publishers,1970.
[6] Kister, H. Distillation Design. McGraw-Hill, Inc,1992.
[7] R. GANI, C. A. Ruiz and I. T. CAMERONS: A GENERALIZED MODEL FOR DISTILLATION COLUMNS-MODEL DESCRIPTION AND APPLICATIONS, Computers & Chemical Engineering, Vol. 10, No. 3, pp. 181-198, 1986
[8] S. Ismail KIRBASHLAR, Ahmet AYDIN, Umur DRAMUR: Identi_cation of a Binary Distillation Column Using Pulse Testing, Tr. J. of Engineering and Environmental Science 22 (1998) , 255- 267.
[9] Shiraz Amjad, Closed Loop Identification For Model Predictive Control: A Case Study,MS Thesis, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS October 2003
[10] K.Ramesh, N.Aziz, and S.R. Abd Shukor:Development of NARX model for distillation column ans studies on effect of regressors, Journal of Applied Sciences 8(7):1214-1220,2008 ISSN 1812-5654
[11]H.Guidi :Open and Closed loop model identification and validation, MS Thesis,University of Pretoria, December 2008
[12] J. R. C Barroso: Modeling and Intelligent Control of a Distillation Column, , MS Thesis, Instituto Superior T´ecnico,Outubro – 2009
[13] Morten Bakke: Subspace Identification using Closed- Loop Data, MS Thesis, Norwegian University of Science and Technology, June 2009
[14] S. Kumar Damarla, Madhusree Kundu: Identification and Control of Distillation Process using, International Journal of Computer Applications (0975 – 8887) Volume 29– No.7, September 2011
[15] S.Meenakshi,G.Saravanakumar: Subspace identificationand Controller design for Distillation Column, International Conference on Computing and Control Engineering (ICCCE 2012), 12 & 13 April, 2012
[16] PetroVietnam Gas Company, Condensate processing plant project—process description, Tech. Rep. 82036-02BM-01, PetroVietnam,Washington, DC, USA, 1999.
[17] Skogestad, S. The dos and dont’s of distillation column control. Chemical Engineering Research and Design (Trans IChemE, Part A) 85,2007.
[18] Lundstr ¨om, P. and S. Skogestad. Opportunities and difficulties with 5×5 distillation columns. Journal of Process Control 5(4). IFAC Symposium: Advanced Control of Chemical Processes, 1995.
[19] Cammarata, L., Fichera, A., and Pagano, A., Neural prediction of combustion instability, Applied Energy, 72:513-528, 2002.
[20] Kister, H. Distillation Operation. McGraw-Hill, Inc, 1990.
[21] POGC (Pars Oil and Gas Company), Oil and Gas Processing Plant Design and Operation Training Course Gas Sweetening Processes, < www.pogc.ir>, 2002
[22] POGC (Pars Oil and Gas Company),Ducument number: SPP-910-107-C-102-03, DB-910-107-P332-5000-Rev0,2009
[23] Li, T. and Georgakis, C. Dynamic input signal design for the identification on constrained systems. Journal of Process Control, 18, 332-346.2008
[34] LJUNG, L. ,System Identification: Theory for the User, 2nd edn, Prentice Hall, Upper Saddle River, N.J. ISBN 0-13-656695-2,1999.
[25] T.S. Soderstorm, Petre G. Stonica, System Identification, Prentice hall, 1989.
[26] Y. zhu, Multivariable system Identification for process control, Elsevier Science, 2001.
[27] J. Kon, Y. Yamashita, T. Tanaka, A. Tashiro and M. Daiguji, Practical Application of Model Identification based on ARX Models with Transfer Functions, Control Engineering Practice, on-line available, 2012
[28] So¨derstrom, T., Fan, H., Carlsson, B., and Bigi, S.: Least squares parameter estimation of continuous-time ARX models from discrete-time data, IEEE Trans. Autom. Control, 42, (5), pp. 659–673, 1997.
[29] Michel Verhaegen,”Filtering and System Identification ,A Least Squares Approach”,Vincent Verdult,2007.
[30] U.Forsseland L.Ljung, Identification of unstable systems using output error and box-jenkins model structures,IEEE Transactions on Automatic Control,vol.45,pp.137-141,2000.
[31] Mats Viberg. Subspace-based Methods for the identification of Linear Time- invariant Systems. Automatica, 31(12):1835-1851, 1995.
[32] M. Verhaegen. identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, 30:61-74, 1994.
[33] Haverkamp,R,State space identification, PhD Thesis,Technical University of Delft,Netherlands,2001
[34] Peter Van Overschee and Bart De Moor. Subspace Identification for LinearSystems: Theory-Implementation-Applications. Kluwer Academic Publishers,1996.
[35] P.V. Overschee. Subspace Identification for Linear Systems: Theory Implementation-Applications. Kluwer Academic Publishers,1996.
[36] Ljung, L. System Identification Toolbox Users Guide. The MathWorks, Inc, Natick.2012
[37] Bomberger,J.D and D.E.Seborg, determination of model order for narx models directly from input-output data,J.Process control,8:458-468,1998
[38] Spinelli, W. Piroddi, L. and Lovera, M. A two-stage algorithm for structure identification of polynomial NARX models,Proceeding of American Control Conference Volume,pp:2387-2392,2006
[39] L. Piroddi and W. Spinelli, An identification algorithm for polynomial NARX models based on simulation error minimization , Int. J. of Control, vol. 76, no. 17, pp. 283-295, 2003.
[40] P. Crama. Identification of block-oriented nonlinear models. PhD thesis, Vrije Universiteit Brussel, Dept. ELEC, June 2004.
[41] E.W. Bai. An optimal two-stage identi_cation algorithm for Hammerstein-Wiener nonlinear systems. Automatica, 4(3):333.338, 1998.
[42] Schoukens, J., Suykens, J., & Ljung, L. Wiener_Hammerstein benchmark. In 15th IFAC symposium on system identification, SYSID, 2009.
[43] Nørgaard.M , Neural Network Based System Identification TOOLBOX For Use with MATLAB, Department of Automation, Technical University of Denmark, 2000.
[44] H. Demuth & M. Beale,Neural Network Toolbox: User’s Guide, Version 3.0, The MathWorks Inc., Natick, MA, 1998.
[45] D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM J. Appl. Math. 11, pp. 164-168, 1963.
[46] M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen (2000): ”Neural networks for Modelling and Control of Dynamic Systems,” Springer-Verlag, London, UK, 2000
[47] J.E. Parkum , Recursive Identification of Time-Varying Systems, Ph.D. thesis, IMM,Technical University of Denmark, 1992.
[48] S.A. Billings, H.B., Jamaluddin, S. Chen, Properties of Neural Networks With Applications to Modelling non-linear Dynamical Systems, Int. J. Control, Vol. 55, No 1, pp. 193-224, 1992.
[49] R. Fletcher: Practical Methods of Optimization, Wiley, 1987.
[50] Jyh-Shing, Roger Jang, ANFIS: Adaptive Network-Based Fuzzy Inference Systems, IEEE Trans. On Systems, Man and Cybernetics, Vol. 23, No. 3, pp. 665-685, 1993.
[51] Mamdani, E. H. & Assilian, S., An experimental in linguistic synthesis with a fuzzy logic control. Int. J. Man-Mach. Stud. 7: 1-13, 1975.
[52] Sugeno, M., Industrial applications of fuzzy control, Elsevier Publication Co. 278 p, 1985.
[53] S. L. Chiu, Fuzzy Model Identification Based on Cluster Estimation,Journal on Intelligent Fuzzy Systems, vol. 2,pp.267–278, 1994.
[54] J.C. Bezdek,R.Ehrich,W.Full, FCM: THE FUZZY c-MEANS CLUSTERING ALGORITHM
,Computers & Geosciences Vol. 10, No. 2-3, pp. 191-203, 1984.
[55] H.Y. Shen, X.Q. Peng, J.N. Wang, Z.K. Hu, A Mountain Clustering Based on Improved PSO Algorithm[A]. First International Conference of Advances in Natural Computation[C], Changsha, China, 477-481. 2005.
[56] Delmirli, K. & Muthukumaran, P., Higher order fuzzy system identification using subtractive clustering, Journal of Intelligent and Fuzzy Systems 9: 129–158, 2000.
[57] Demirli K., S. X. Cheng, P. Muthukumaran, Subtractive clustering based modeling of job sequencing with parametric search, Fuzzy Sets and Systems, 137:235-270,2003.
[58] JunYing Chen, Zheng Qin and Ji Jia, A Weighted Mean Subtractive Clustering Algorithm, Information Technology Journal 7 (2): 356-360, ISSN 1812-5638, 2008.
[59] Kim, DW., K.Y. Lee and K.H. Lee, A Kernel Based Subtractive Clustering Method,Pattern Recog. Lett., 26(7):879-891,2005.
[60] Fuzzy Logic Toolbox2 Users Guide. The MathWorks, Inc, Natick.2010.
[61] Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353, 1965.
[62] J. Mendel and R. John, Type-2 fuzzy set made simple, IEEE Trans. On Fuzzy Systems, vol. 10, no. 2, pp. 117–127, 2002.
[63] N. Karnik and J.M. Mendel, Operations on Type-2 Fuzzy Sets, Fuzzy Sets and Systems, Vol 122, pp.327-348, 2001.
[64] Uyen Nguyen Mau, Long Ngo Thanh and Tinh Dao Thanh, Approach to Image Segmentation Based on Interval Type-2 Fuzzy Subtractive Clustering, Intelligent Information and Database Systems ,Lecture Notes in Computer ScienceVolume :7197, pp 1-10, 2012
[65] Long Thanh Ngo, Binh Huy Pham, Type-2 Fuzzy Subtractive Clustering Algorithm, Advances in Intelligent and Soft Computing, Springer, Vol. 125/2012, pp.395-402, 2012.
[66] C. Hwang and F. C. Rhee, Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to C-Means, IEEE Trans. On Fuzzy Systems, Vol. 15, pp 107-120, 2007.