فهرست:
1 .فصل اول: پیشگفتار. 1
1.1 پیشگفتار 2
1.2 تعریف مسئله. 4
2 .فصل دوم: معرفی اجزای ریزشبکه و پیشینه تحقیق... 6
2.1 معرفی ریز شبکه ها 7
2.2 مروری بر کارهای پیشین.. 9
2.3 معرفی انواع تکنولوژی تولید پراکنده درریزشبکهها 12
2.3.1 مولدهای پراکنده تجدید ناپذیر. 14
2.3.1.1 موتورهای پیستونی (رفت و برگشتی) 14
2.3.1.2 پیلهای سوختی... 17
2.3.1.3 توربینهای گازی... 20
2.3.1.4 میکروتوربینها 21
2.3.2 مولدهای پراکنده تجدیدپذیر. 22
2.3.2.1 انرژی خورشیدی... 22
2.3.2.2 سیستم فتوولتائیک..... 24
2.3.2.3 نیروگاههای بادی... 26
2.3.2.4 نیروگاههای برق آبی... 28
2.4 سیستم ذخیره ساز در ریزشبکهها 29
2.4.1 سیستم ذخیره انرژی تلمبه ذخیرهای.. 30
2.4.2 سیستم ذخیره انرژی مغناطیس ابررسانا 31
2.4.3 سیستم ذخیره انرژی هوای فشرده 32
2.4.4 سیستم ذخیره انرژی ابرخازن.. 33
2.4.5 سیستم ذخیره انرژی بر پایه هیدروژن.. 33
2.4.6 ذخیره انرژی حرارتی.. 34
2.5 تاثیرات ریزشبکهها در سیستم.. 35
2.5.1 ریزشبکهها و تاثیرات آن در کیفیت توان.. 35
2.5.2 ریزشبکهها و تاثیرات آن در هزینه توان تولیدی.. 36
2.5.3 تاثیرات ریزشبکهها بر محیط زیست... 37
3 .فصل سوم:تعریف تابع هدف براساس مدل اقتصادی.. 40
3.1 مقدمه 41
3.2 مدل اقتصادی سیستم مورد مطالعه. 42
3.2.1 هزینه سرمایه گذاری اولیه(ACC) 43
3.2.2 هزینه جایگزینی سالیانه (ARC) 44
3.2.3 هزینه سوخت سالیانه(AFC) 44
3.2.4 هزینه تعمیر و نگهداری(AOC) 44
3.3 تابع هدف و قیود مسئله. 45
3.3.1 قیود مسئله. 46
3.3.2 الگوریتم مبتنی بر سناریو برای عدم قطعیت توان تولیدی از توربین بادی و آرایه خورشیدی.. 47
4 .فصل چهارم: نتایج شبیه سازی.. 49
4.1 نتایج شبیه سازی.. 50
4.2 مشخصات اجزای ریزشبکه. 50
4.3 بار ناحیه مورد مطالعه. 51
4.4 تولیدات منابع انرژی تجدید پذیر. 52
4.5 سناریو های احتمالی.. 53
4.5.1 تعیین سایز بهینه شده واحدها در ریزشبکه با عدم قطعیت در تولید واحدهای تجدیدپذیر. 55
4.5.2 بررسی هزینه در حالت تولید قطعی.. 56
5 .فصل پنجم: جمعبندی و نتیجهگیری.. 57
5.1 نتیجه گیری.. 58
5.2 پیشنهادهایی برای ادامه کار 59
منابع و مراجع.. 60
Abstract 65
منبع:
[1] F. Katiraei, C. Abbey, and S. Member, “Diesel Plant Sizing and Performance Analysis of a Remote Wind-Diesel Microgrid,” pp. 1–8, 2007.
[2] D. Edwards and M. Negnevitsky, “Designing a wind-diesel hybrid remote area power supply (RAPS) system,” in Sustainable Energy Technologies, 2008. ICSET 2008. IEEE International Conference on, 2008, pp. 312–317.
[3] W. Su, S. Member, Z. Yuan, and M. Chow, “Microgrid Planning and Operation : Solar Energy and Wind Energy,” pp. 1–7, 2010.
[4] A. Ghaedi, A. Abbaspour, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, and M. Othman, “Reliability evaluation of a composite power system containing wind and solar generation,” in Power Engineering and Optimization Conference (PEOCO), 2013 IEEE 7th International, 2013, pp. 483–488.
[5] H. V. Haghi, S. M. Hakimi, and S. M. M. Tafreshi, “Optimal Sizing of a Hybrid Power System Considering Wind Power Uncertainty Using PSO-Embedded Stochastic Simulation,” pp. 722–727, 2010.
[6] G. Celli, F. Pilo, G. Pisano, and G. G. Soma, “Optimal participation of a microgrid to the energy market with an intelligent EMS,” in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 663–668.
[7] R. M. Kamel, A. Chaouachi, and K. Nagasaka, “Carbon emissions reduction and power losses saving besides voltage profiles improvement using micro grids,” Low Carbon Econ., vol. 1, no. 1, pp. 1–7, 2010.
[8] S. Watanabe and B. Rengarajan, “Operation planning of an independent microgrid for cold regions by the distribution of fuel cells and water electrolyzers using a genetic algorithm,” Int. J. Hydrogen Energy, vol. 36, no. 22, pp. 14295–14308, 2011.
[9] H. Yang, W. Zhou, L. Lu, and Z. Fang, “Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm,” Sol. Energy, vol. 82, no. 4, pp. 354–367, Apr. 2008.
[10] Z. Liu, F. Wen, G. Ledwich, and S. Member, “Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Uncertainties,” vol. 26, no. 4, pp. 2541–2551, 2011.
[11] E. Haesen, M. Espinoza, B. Pluymers, I. Goethals, V. Van Thong, J. Driesen, R. Belmans, and B. De Moor, “Optimal Placement and Sizing of Distributed Generator Units using Genetic Optimization Algorithms,” pp. 1–19, 2005.
[12] M. Mohammadi, S. H. Hosseinian, and G. B. Gharehpetian, “Optimization of hybrid solar energy sources / wind turbine systems integrated to utility grids as microgrid ( MG ) under pool / bilateral / hybrid electricity market using PSO,” Sol. Energy, vol. 86, no. 1, pp. 112–125, 2012.
[13] M. A. Behrang, E. Assareh, A. R. Noghrehabadi, and A. Ghanbarzadeh, “New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique,” Energy, vol. 36, no. 5, pp. 3036–3049, 2011.
[14] R. S. Garcia and D. Weisser, “A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch,” Renew. energy, vol. 31, no. 14, pp. 2296–2320, 2006.
[15] A. Mellit, S. a. Kalogirou, and M. Drif, “Application of neural networks and genetic algorithms for sizing of photovoltaic systems,” Renew. Energy, vol. 35, no. 12, pp. 2881–2893, Dec. 2010.
[16] F. Nicolin and V. Verda, “Lifetime optimization of a molten carbonate fuel cell power system coupled with hydrogen production,” Energy, vol. 36, no. 4, pp. 2235–2241, 2011.
[17] J. Lagorse, D. Paire, and A. Miraoui, “Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery,” Renew. Energy, vol. 34, no. 3, pp. 683–691, 2009.
[18] S. Kamel and C. Dahl, “The economics of hybrid power systems for sustainable desert agriculture in Egypt,” Energy, vol. 30, no. 8, pp. 1271–1281, 2005.
[19] A. R. Prasad and E. Natarajan, “Optimization of integrated photovoltaic–wind power generation systems with battery storage,” Energy, vol. 31, no. 12, pp. 1943–1954, 2006.
[20] W. Zhou, H. Yang, and Z. Fang, “Battery behavior prediction and battery working states analysis of a hybrid solar–wind power generation system,” Renew. Energy, vol. 33, no. 6, pp. 1413–1423, 2008.
[21] C. Dennis Barley and C. Byron Winn, “Optimal dispatch strategy in remote hybrid power systems,” Sol. Energy, vol. 58, no. 4, pp. 165–179, 1996.
[22] J. K. Kaldellis, D. Zafirakis, and E. Kondili, “Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis,” Energy, vol. 34, no. 9, pp. 1187–1198, 2009.
[23] R. Dufo-López and J. L. Bernal-Agustín, “Design and control strategies of PV-Diesel systems using genetic algorithms,” Sol. energy, vol. 79, no. 1, pp. 33–46, 2005.
[24] W. Zhou, C. Lou, Z. Li, L. Lu, and H. Yang, “Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems,” Appl. Energy, vol. 87, no. 2, pp. 380–389, 2010.
[25] C. Changsong, D. Shanxu, C. Tao, L. Bangyin, and Y. Jinjun, “Energy Trading Model for Optimal Microgrid Scheduling Based on Genetic Algorithm,” vol. 3, pp. 2136–2139.
[26] C.-S. Wang, B. Yu, J. Xiao, and L. Guo, “Multi-scenario, multi-objective optimization of grid-parallel Microgrid,” in Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011 4th International Conference on, 2011, pp. 1638–1646.
[27] R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Load sharing and power quality enhanced operation of a distributed microgrid,” Renew. Power Gener. IET, vol. 3, no. 2, pp. 109–119, 2009.
[28] X. Wang, Y.-Z. Li, and S.-H. Zhang, “A new neural network approach to economic emission load dispatch,” in Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on, 2002, vol. 1, pp. 501–505.
[29] S. Obara, M. Kawai, O. Kawae, and Y. Morizane, “Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics,” Appl. Energy, vol. 102, pp. 1343–1357, Feb. 2013.
[30] O. Hafez and K. Bhattacharya, “Optimal planning and design of a renewable energy based supply system for microgrids,” Renew. Energy, vol. 45, pp. 7–15, Sep. 2012.
[31] A. Milo, H. Gaztañaga, I. Etxeberria-Otadui, E. Bilbao, and P. Rodríguez, “Optimization of an experimental hybrid microgrid operation: reliability and economic issues,” in PowerTech, 2009 IEEE Bucharest, 2009, pp. 1–6.
[32] A. Sobu and G. Wu, “Optimal operation planning method for isolated micro grid considering uncertainties of renewable power generations and load demand,” in Innovative Smart Grid Technologies-Asia (ISGT Asia), 2012 IEEE, 2012, pp. 1–6.
[33] D. Cartes, J. Ordonez, J. Harrington, D. Cox, and R. Meeker, “Novel Integrated Energy Systems and control methods with economic analysis for integrated community based energy systems,” in Power Engineering Society General Meeting, 2007. IEEE, 2007, pp. 1–6.
[34] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” Energy Conversion, IEEE Trans., vol. 19, no. 2, pp. 441–448, 2004.
[35] A. Mostafaeipour and N. Mostafaeipour, “Renewable energy issues and electricity production in Middle East compared with Iran,” Renew. Sustain. Energy Rev., vol. 13, no. 6, pp. 1641–1645, 2009.
[36] C. Cecati, C. Citro, A. Piccolo, and P. Siano, “Smart operation of wind turbines and diesel generators according to economic criteria,” Ind. Electron. IEEE Trans., vol. 58, no. 10, pp. 4514–4525, 2011.
[37] S. M. Haile, “Fuel cell materials and components,” Acta Mater., vol. 51, no. 19, pp. 5981–6000, 2003.
[38] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, “PBI‐Based Polymer Membranes for High Temperature Fuel Cells–Preparation, Characterization and Fuel Cell Demonstration,” Fuel Cells, vol. 4, no. 3, pp. 147–159, 2004.
[39] A. M. Azmy and I. Erlich, “Dynamic simulation of fuel cells and microturbines integrated with a multimachine network,” in Power Tech Conference Proceedings, 2003 IEEE Bologna, 2003, vol. 2, p. 6–pp.
[40] W. El-Khattam and M. M. A. Salama, “Distributed generation technologies, definitions and benefits,” Electr. Power Syst. Res., vol. 71, no. 2, pp. 119–128, 2004.
[41] A. F. Zobaa and R. C. Bansal, Handbook of renewable energy technology. World Scientific, 2011.
[42] C. Corchero, F. Heredia, and J. Cairo, “Optimal sizing of microgrids : a fast charging station case,” pp. 1–6.
[43] H. Lund, “Renewable energy strategies for sustainable development,” Energy, vol. 32, no. 6, pp. 912–919, 2007.
[44] “Canadian Wind Energy Atlas.” [Online]. Available: http://windatlas.ca/en/index.php.
[45] J. D. Boyes and N. H. Clark, “Technologies for energy storage. flywheels and super conducting magnetic energy storage,” in Power Engineering Society Summer Meeting, 2000. IEEE, 2000, vol. 3, pp. 1548–1550.
[46] D. J. Swider, “Compressed air energy storage in an electricity system with significant wind power generation,” Energy Conversion, IEEE Trans., vol. 22, no. 1, pp. 95–102, 2007.
[47] R. Bornatico, M. Pfeiffer, A. Witzig, and L. Guzzella, “Optimal sizing of a solar thermal building installation using particle swarm optimization,” Energy, vol. 41, no. 1, pp. 31–37, 2012.
[48] A. Rufer and P. Barrade, “A supercapacitor-based energy-storage system for elevators with soft commutated interface,” Ind. Appl. IEEE Trans., vol. 38, no. 5, pp. 1151–1159, 2002.
[49] F. Breu, S. Guggenbichler, and J. Wollmann, “Hydrogen-based Autonomous Power Systems,” Vasa, 2008.
[50] S. D. Sharma and K. Sagara, “Latent heat storage materials and systems: a review,” Int. J. Green Energy, vol. 2, no. 1, pp. 1–56, 2005.
[51] M. R. Miveh, M. Gandomkar, S. Mirsaeidi, and H. Nasiban, “Micro-Grid Protection by Designing a Communication-Assisted Digital Relay,” Am. J. Sci. Res. Isuue, vol. 51, pp. 62–68, 2012.
[52] S. P. S. Chowdhury and P. Crossley, Microgrids and active distribution networks. Institution of Engineering and Technology, 2009.
[53] G. St Denis and P. Parker, “Community energy planning in Canada: The role of renewable energy,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 2088–2095, 2009.
[54] A. Kashefi Kaviani, G. H. Riahy, and S. H. Kouhsari, “Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages,” Renew. energy, vol. 34, no. 11, pp. 2380–2390, 2009.
[55] A. J. Conejo, M. Carriâon, and J. M. Morales, Decision making under uncertainty in electricity markets, vol. 153. Springer, 2010.