فهرست:
فصل اول: مقدمه. 1
1-1مقدمه 2
1-2اهمیت موضوع. 3
1-3مروری بر مطالعات صورت گرفته جهت کاهش تاثیرات منبع تولید پراکنده. 5
1-4اهداف پایاننامه. 7
1-5ساختار پایاننامه. 9
فصل دوم: مروری بر پیشینه تحقیق... 10
2-1مقدمه 11
2-2منبع تولید پراکنده. 11
2-3میکروگرید. 13
2-4محدودکننده جریان خطا 16
2-4-1راکتورهای محدود کننده جریان.. 17
2-4-2Is-limiter 18
2-4-3محدودکننده جریان خطای حالت جامد. 20
2-4-4محدودکننده جریان خطای ابر رسانا 23
2-4-5 محدودکننده جریان خطای تک جهته 27
2-5مروری بر کارهای انجام شده. 27
فصل سوم: تشریح روش 31
3-1مقدمه 31
3-2الگوریتم بهینه سازی استاد و دانشجو[43]. 33
3-2-1مقدمه 33
3-2-2بهینهسازی بر اساس تدریس - یادگیری.. 34
3-2-3پیادهسازی TLBO برای بهینهسازی.. 38
3-2-4تصحیح الگوریتم استاد و دانشجو. 40
3-3سیستم حفاظتی.. 40
3-4شبکه توزیع حلقوی 20 کیلوولت... 42
3-5شبکه IEEE 30 باس... 47
3-5-1تابع هزینه 52
3-5-2 تاثیرمحدودکننده جریان خطا در ولتاژ میکروگرید................................................54
فصل چهارم: نتایج شبیهسازی.. 56
4-1مقدمه 56
4-2شبکه توزیع حلقوی 20 کیلوولت... 56
4-2-1هماهنگی سیستم حفاظت... 59
4-2-2بهبود کیفیت توان با به کار بردن محدودکننده جریان خطا تک جهته. 64
4-3شبکه IEEE 30 باس... 66
4-3-1هماهنگی حفاظتی.. 67
4-3-2تاثیر محدودکننده جریان خطا تک جهته بر کیفیت ولتاژ در میکروگرید. 74
فصل پنجم : نتیجهگیری و پیشنهادات... 76
5-1 نتیجهگیری...........................................................................................................................77
5-2 پیشنهادات............................................................................................................................78
منابع و مآخذ.....
منبع:
W. Najy, H. Zeineldin, and W. Woon, "Optimal Protection Coordination for Microgrids with Grid-Connected and Islanded Capability," IEEE Industrial Electronics Society, vol. 60, pp. 1668 - 1677, 2013.
[2] K. Komsan, K. Furusawa, Y. Mitani, and K. Tsuji, "Allocation and circuit parameter design of superconducting fault current limiters in loop power system by a genetic algorithm," 電気学会論文誌 B (電力・エネルギー部門誌), vol. 123, pp. 1054-1063, 2003.
[3] J.-H. Teng and C.-N. Lu, "Optimum fault current limiter placement with search space reduction technique," Generation, Transmission & Distribution, IET, vol. 4, pp. 485-494, 2010.
[4] C. L. Smallwood, "Distributed generation in autonomous and nonautonomous micro grids," in Rural Electric Power Conference, 2002. 2002 IEEE, 2002, pp. D1-D6.
[5] S. M. Brahma and A. A. Girgis, "Development of adaptive protection scheme for distribution systems with high penetration of distributed generation," Power Delivery, IEEE Transactions on, vol. 19, pp. 56-63, 2004.
[6] K. Kauhaniemi and L. Kumpulainen, "Impact of distributed generation on the protection of distribution networks," 2004.
[7] M. T. Doyle, "Reviewing the impacts of distributed generation on distribution system protection," in Power Engineering Society Summer Meeting, 2002 IEEE, 2002, pp. 103-105.
[8] T. M. de Britto, D. R. Morais, M. A. Marin, J. G. Rolim, H. Zurn, and R. F. Buendgens, "Distributed generation impacts on the coordination of protection systems in distribution networks," in Transmission and Distribution Conference and Exposition: Latin America, 2004 IEEE/PES, 2004, pp. 623-628.
[9] H.-J. Lee, G. Son, and J.-W. Park, "Study on wind-turbine generator system sizing considering voltage regulation and overcurrent relay coordination," Power Systems, IEEE Transactions on, vol. 26, pp. 1283-1293, 2011.
[10] T. Saksornchai and B. Eua-arporn, "Determination of allowable capacity of distributed generation with protection coordination consideration," Engineering Journal, vol. 13, pp. 29-44, 2009.
[11] S. Chaitusaney and A. Yokoyama, "Impact of protection coordination on sizes of several distributed generation sources," in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 669-674.
[12] S. Chaitusaney and A. Yokoyama, "An appropriate distributed generation sizing considering recloser-fuse coordination," in Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, 2005, pp. 1-6.
[13] S. Chaitusaney and A. Yokoyama, "Prevention of reliability degradation from recloser–fuse miscoordination due to distributed generation," Power Delivery, IEEE Transactions on, vol. 23, pp. 2545-2554, 2008.
[14] J. Tailor and A. Osman, "Restoration of fuse-recloser coordination in distribution system with high DG penetration," in Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008, pp. 1-8.
[15] S. M. Brahma and A. A. Girgis, "Microprocessor-based reclosing to coordinate fuse and recloser in a system with high penetration of distributed generation," in Power Engineering Society Winter Meeting, 2002. IEEE, 2002, pp. 453-458.
[16] F. A. Viawan, D. Karlsson, A. Sannino, and J. Daalde, "Protection scheme for meshed distribution systems with high penetration of distributed generation," in Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006. PS'06, 2006, pp. 99-104.
[17] H. Wan, K. Li, and K. Wong, "Multi-agent application of substation protection coordination with distributed generators," in Future Power Systems, 2005 International Conference on, 2005, pp. 6.
[18] G. Tang and M. Iravani, "Application of a fault current limiter to minimize distributed generation impact on coordinated relay protection," in International Conference on Power Systems Transients (IPST’05), Montreal, Canada, 2005, pp. 19-23.
[19] T. Sato, M. Yamaguchi, T. Terashima, S. Fukui, J. Ogawa, and H. Shimizu, "Study on the effect of fault current limiter in power system with dispersed generators," Applied Superconductivity, IEEE Transactions on, vol. 17, pp. 2331-2334, 2007.
[20] J. Kumara, A. Atputharajah, J. Ekanayake, and F. Mumford, "Over current protection coordination of distribution networks with fault current limiters," in Power Engineering Society General Meeting, 2006. IEEE, 2006.
[21] "IEEE standard for interconnecting distributed resources with electric power systems," IEEE Std1547-2003, pp. 1-16, 2003.
[22] J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, et al., "Distributed generation: Toward a new energy paradigm," Industrial Electronics Magazine, IEEE, vol. 4, pp. 52-64, 2010.
[23] A.-M. Borbely and J. F. Kreider, Distributed generation: the power paradigm for the new millennium: CRC press, 2010.
[24] M. Barnes, J. Kondoh, H. Asano, J. Oyarzabal, G. Ventakaramanan, R. Lasseter, et al., "Real-world microgrids-an overview," in System of Systems Engineering, 2007. SoSE'07. IEEE International Conference on, 2007, pp. 1-8.
[25] F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, "Microgrids management," Power and Energy Magazine, IEEE, vol. 6, pp. 54-65, 2008.
[26] D. Bo, Y. Li, and Z. Zheng, "Energy management of hybrid DC and AC bus linked microgrid," in Power Electronics for Distributed Generation Systems (PEDG), 2010 2nd IEEE International Symposium on, 2010, pp. 713-716.
[27] T. Ise, "Advantages and circuit configuration of a DC microgrid," in Proc. Symposium on Microgrids, 2006.
[28] S. Chakraborty, M. D. Weiss, and M. G. Simões, "Distributed intelligent energy management system for a single-phase high-frequency AC microgrid," Industrial Electronics, IEEE Transactions on, vol. 54, pp. 97-109, 2007.
[29] X. Wu, N. Jenkins, G. Strbac, J. Watson, and C. Mitchell, Integrating renewables and CHP into the UK electricity system: Tyndall Centre for Climate Change Research, 2004.
[30] C. Chang and P. Loh, "Designs synthesis of resonant fault current limiter for voltage sag mitigation and current limitation," in Power Engineering Society Winter Meeting, 2000. IEEE, 2000, pp. 2482-2487.
[31] E. King, A. Chikhani, R. Hackam, and M. Salama, "A microprocessor-controlled variable impedance adaptive fault current limiter," Power Delivery, IEEE Transactions on, vol. 5, pp. 1830-1838, 1990.
[32] C. Chang and P. Loh, "Integration of fault current limiters on power systems for voltage quality improvement," Electric Power Systems Research, vol. 57, pp. 83-92, 2001.
[33] C. Park, N. Lee, G. Jang, D. Ha, and T. Sung, "Process parameter dependent characteristics of centrifugally formed HTS Bi-2212 tubes," Applied Superconductivity, IEEE Transactions on, vol. 15, pp. 3145-3148, 2005.
[34] T. Matsumura, T. Aritake, Y. Yokomizu, H. Shimizu, and N. Murayama, "Performances of small fault current limiting breaker model with high Tc Superconductor," Applied Superconductivity, IEEE Transactions on, vol. 15, pp. 2114-2117, 2005.
[35] S. Kozak, T. Janowski, B. Kondratowicz-Kucewicz, J. Kozak, and G. Wojtasiewicz, "Experimental and numerical analysis of energy losses in resistive SFCL," Applied Superconductivity, IEEE Transactions on, vol. 15, pp. 2098-2101, 2005.
[36] M. Ichikawa, H. Kado, M. Shibuya, and T. Matsumura, "Inductive type fault current limiter with Bi-2223 thick film on a MgO cylinder," Applied Superconductivity, IEEE Transactions on, vol. 13, pp. 2004-2007, 2003.
[37] T. Ghanbari and E. Farjah, "Unidirectional Fault Current Limiter: An Efficient Interface Between the Microgrid and Main Network," IEEE Trans. Power Del., vol. 28, no. 2, pp. 1591–1598, May. 2013.
[38] W. El-Khattam and T. S. Sidhu, "Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter," Power Delivery, IEEE Transactions on, vol. 23, pp. 576-585, 2008.
[39] W. Najy, H. Zeineldin, and W. Woon, "Optimal Protection Coordination for Microgrids with Grid-Connected and Islanded Capability," IEEE Industrial Electronics Society, vol. 60, pp. 1668 -1677, 2013.
[40] J.-H. Teng and C.-N. Lu, "Optimum fault current limiter placement," in Intelligent Systems Applications to Power Systems, 2007. ISAP 2007. International Conference on, 2007, pp. 1-6.
[41] S.-Y. Kim, W.-W. Kim, and J.-O. Kim, "Determining the location of superconducting fault current limiter considering distribution reliability," Generation, Transmission & Distribution, IET, vol. 6, pp. 240-246, 2012.
[42] K. Hongesombut, Y. Mitani, and K. Tsuji, "Optimal location assignment and design of superconducting fault current limiters applied to loop power systems," Applied Superconductivity, IEEE Transactions on, vol. 13, pp. 1828-1831, 2003.
[43] Y. Zhang and R. A. Dougal, "Specification of fault current limitation level for FCLs in power systems," in IEEE SoutheastCon 2010 (SoutheastCon), Proceedings of the, 2010, pp. 246-249.
[44] S.-Y. Kim and J.-O. Kim, "Reliability evaluation of distribution network with DG considering the reliability of protective devices Affected by SFCL," Applied Superconductivity, IEEE Transactions on, vol. 21, pp. 3561-3569, 2011.
[45] R. Rao, V. Savsani, and D. Vakharia, "Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems," Computer-Aided Design, vol. 43, pp. 303-315, 2011.
[46] T. Niknam and A. Kavousifard, "Impact of thermal recovery and hydrogen production of fuel cell power plants on distribution feeder reconfiguration," Generation, Transmission & Distribution, IET, vol. 6, pp. 831-843, 2012.
[47] B. Chattopadhyay, M. Sachdev, and T. Sidhu, "An on-line relay coordination algorithm for adaptive protection using linear programming technique," Power Delivery, IEEE Transactions on, vol. 11, pp. 165-173, 1996.
[48] R. Chabanloo, H. A. Abyaneh, A. Agheli, and H. Rastegar, "Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network," IET generation, transmission & distribution, vol. 5, pp. 903-911, 2011.
[49] F. Katiraei, M. R. Iravani, and P. Lehn, "Micro-grid autonomous operation during and subsequent to islanding process," Power Delivery, IEEE Transactions on, vol. 20, pp. 248-257, 2005.