فهرست:
فصل اول: مقدمه...............................................................................................................................................................1
1-1- مروری برکارهای گذشته.....................................................................................................................2
راهبرد کنترل گشتاور.....................................................................................................2
راهبرد کنترل ولتاژ........................................................................................................6
کنترل عاطفی...............................................................................................................14
اهداف مورد نظر.............................................................................................................................16
ساختار کلی رساله.........................................................................................................................17
فصل دوم: مروری بر مدلسازی ریاضی بازوهای ماهر مکانیکی.............................................................................19
............................................................................................................................................20
سینماتیکی.....................................................................................................................20
2-2-1-سینماتیک مستقیم................................................................................................................20
2-2-2-سینماتیک وارون....................................................................................................................28
2-2-3- سینماتیک سرعت و ماتریس ژاکوبین.............................................................................29
2-3- مدلسازی دینامیکی..............................................................................................................................31
فصل سوم: راهبرد کنترل ولتاژ....................................................................................................................................35
3-1- مقدمه......................................................................................................................................................36
3-2- معادلات حرکت سیستم رباتیک ....................................................................................................37
3-3-قانون کنترل در راهبرد کنترل ولتاژ................................................................................................39
3-4- شبیهسازی سیستم کنترل................................................................................................................41
3-5-نتیجهگیری.....................................................................................................................................44
فصل چهارم: تخمین عدم قطعیت با استفاده از سری فوریه.................................................................................45
4-1- مقدمه....................................................................................................................................................................46
4-2- تقریب توابع با استفاده از سری فوریه.............................................................................................................47
4-3- طراحی کنترلکننده مقاوم مستقل از مدل....................................................................................................48
4-3-1- قانون کنترل پیشنهادی.......................................................................................................................49
4-3-2- تحلیل پایداری......................................................................................................................................51
4-3-3- تعیین دوره تناوب اساسی سری فوریه..............................................................................................55
4-4- نتایج شبیه سازیها............................................................................................................................................61
4-4-1- ردگیری مسیرهای سینوسی..............................................................................................................61
4-4-2- ردگیری مسیرهای متناوب غیر سینوسی........................................................................................64
4-4-3- سایر دورههای تناوب...........................................................................................................................67
4-4-4- دورههای تناوب اصم.......................................................................................................................68
4-4-5-مسیرهای نامتناوب و اغتشاش خارجی.......................................................................................69
4-4-6- مقایسه با کنترلکننده عصبی-فازی..............................................................................................73
4-5- نتایج آزمایشگاهی...............................................................................................................................................79
4-5-1- ردگیری مسیرهای سینوسی..........................................................................................................81
4-5-2- ردگیری مسیرهای مربعی................................................................................................................84
4-6- مقایسه نتایج شبیهسازی و آزمایشگاهی........................................................................................................86
4-7- نتیجهگیری...........................................................................................................................................................87
فصل پنجم: تخمین عدم قطعیت در فضای کار با استفاده از توابع لژاندر..........................................................89
5-1- مقدمه...........................................................................................................................................................90
5-2- تقریب توابع با استفاده از چندجملهایهای لژاندر..............................................................................91
5-3- کنترل مقاوم کلاسیک در فضای کار با استفاده از راهبرد کنترل ولتاژ.........................................93
5-4- تخمین عدم قطعیت با استفاده از چندجملهایهای لژاندر...............................................................97
5-5- نتایج شبیهسازی........................................................................................................................................100
5-5-1- کنترل مقاوم کلاسیک..................................................................................................................100
5-5-2- کنترل مقاوم پیشنهادی با استفاده از توابع لژاندر.....................................................................104
5-5-3- مقایسه با سایر کنترلکنندههای مبتنی بر ولتاژ [112]........................................................107
5-6- نتیجهگیری.......................................................................................................................................................109
فصل ششم: کنترل مقاوم سیستمهای غیرخطی مرتبه اول با استفاده از یادگیری عاطفی مغز ...............111
6-1- مقدمه........................................................................................................................................................112
6-2- مدلسازی ریاضی یادگیری عاطفی مغز...................................................................................................112
6-3- طراحی قانون کنترل و اثبات پایداری.....................................................................................................116
6-4- نتایج آزمایشگاهی.......................................................................................................................................121
6-5- نتیجهگیری....................................................................................................................................................124
فصل هفتم: نتیجهگیری و پیشنهادات....................................................................................................................127
7-1-نتیجهگیری...................................................................................................................................................128
7-2 پیشنهادات....................................................................................................................................................131
فهرست منابع................................................................................................................................................................133
پیوست الف: مدل ریاضی بازوی ماهر اسکارا..........................................................................................................151
پیوست ب: اثبات لمهای فصل 4................................................................................................................155
پیوست ج: بوردها .........................................................................................................................................161
منبع:
Spong M. W., Hutchinson, S., and Vidyasagar M. (2006), “Robot modeling and control”, Wiley, Hoboken.
Slotine, J. J. and Li, W, (1991), “Applied nonlinear control”, Englewood Cliffs, NJ: Prentice-Hall.
Qu, Z., and Dawson, D. M. (1996), “Robust tracking control of robot manipulators”, New York: IEEE Press.
Sage, H.G., De Mathelin, M.F., and Ostertag, E. (1999), “Robust control of robot manipulators: a survey”, Int. J. Control. Vol. 72, No. 16, pp. 1498–1522.
Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M. (1991), “Survey of robust control for rigid robots”, IEEE Control Syst. Mag., Vol. 11, pp. 24–30.
Corless M.J., (1993), “Control of uncertain nonlinear systems”, ASME Trans. J. Dyn. Syst. Meas. Control, Vol. 115, No, 2B, pp. 362–372.
Astrom K. J. and Wittenmark B., (1995), “Adaptive Control”, Addison-Wesley, New York.
Ortega R., Spong M. W. (1988), “Adaptive motion control of rigid robots: a tutorial” Proceedings of the 27th conference on decision and control, pp. 1575-1584
Fateh, M. M. (2010). “Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model”, Nonlinear Dynamics, Vol. 61, No. 4, pp. 655–666.
Fateh M. M., Azargoshasb S. and Khorashadizadeh S. (2014), ‘’Model-free discrete control for robot manipulators using a fuzzy estimator’’, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33, No. 3, pp. 1-18.
Fateh, M. M., Ahmadi, S. M., and Khorashadizadeh, S. (2014), “Adaptive RBF network control for robot manipulators”, Journal of AI and Data Mining, In Press.
Wang L.X., (1994), “Adaptive fuzzy systems and control”, Prentice Hall.
Wei L., Yang L., Wang H. (2006), “Indirect fuzzy adaptive control for trajectory tracking of uncertain robots”, Electric Machines and control, Vol. 10, No. 4, pp. 393-397.
Golea N., (2002), “Indirect fuzzy adaptive model-following control for robot manipulators”, Proceedings of the 2002 IEEE international conference on control applications, pp. 198-202.
Qi R. and Brdys M. A. (2006), “Indirect adaptive fuzzy control for nonlinear systems with online modeling”, Proc. Internat. Conf. Control, Glasgow,Scotland.
Hong-rui W., Zeng-wei C., Li-xin W., Xue-jing T., Xiu-ling L., (2007), “Direct adaptive fuzzy control for robots in cartesian space”, Proceedings of Sixth International Conference on Machine Learning Cybernetics, pp. 482-486, Hong Kong.
Cho, Y.W., Seo, K.S., Lee, H.J., (2007), “A direct adaptive fuzzy control of nonlinear systems with application to robot manipulator tracking control”, Int. J. Control. Autom. Syst, Vol. 5, pp. 630–642.
Er M. J. and Chin S.H., (2000), “Hybrid adaptive fuzzy controllers of robot manipulators with bounds estimation”, IEEE Trans. Ind. Electrn, Vol. 47, No. 5, pp. 1151-1160.
Yoo B.K. and Woon C. H., (2000), “Adaptive control of robot manipulators using fuzzy compensator", IEEE Trans. Fuzzy Syst, Vol. 8, No. 2, pp.186-199.
Kim E., (2004), “Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic”, IEEE Trans. Fuzzy Syst, Vol. 12, No. 3, pp. 368-378.
Ham C. and Qu Z., Johnson R., (2000), “Robust fuzzy control for robot manipulators”, IEE Proc., control theory appl., Vol. 147, No. 2, pp. 212-216.
Hwang J.P. and Kim E., (2006), “Robust tracking control of an electrically driven robot: Adaptive fuzzy approach”, IEEE Trans. Fuzzy Syst, Vol. 14, No. 2, pp. 232-247.
Kim V.T., (2002), “Independent joint adaptive fuzzy control of robot manipulators”, The 5th Biannual world automation congress, Vol. 14, pp. 645-652.
Purwar S., Kar I.N., and Jha A.N., (2005), “Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints”, Fuzzy Sets and Systems, Vol. 152, No. 3, pp. 651-664.
Wai, R.J., Chen, P.C., (2004), “Intelligent tracking control for robot manipulator including actuator dynamics via TSK-type fuzzy neural network”, IEEE Trans. Fuzzy Syst., Vol.12, pp. 552–560.
Kwan C., Lewis F.L., and Dawson D.M., (1998), “Robust neural-network control of rigid-link electrically driven robots”, IEEE Trans. Neural Netw., Vol. 9, pp. 581–588.
Lia, R. J., (2011), “Intelligent controller for robotic motion control,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5220–5230.
Mostefai L., Denai M., Oh S., and Hori, Y., (2009), “Optimal control design for robust fuzzy friction compensation in a robot joint,” IEEE Trans. Ind. Electron., Vol. 56, No. 10, pp. 3832–3839.
Chang Y.C., Yen H.M., Wu M.F., (2008), “An intelligent robust tracking control for electrically-driven robot systems”, Int. J. Systems Sci., Vol. 39, pp. 497–511.
Hou, Z. G., Zou, A. M., Cheng, L., and Tan M., (2009), “Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot via Backstepping and Fuzzy Approach”, IEEE Trans. Control Syst. Technol., Vol. 17, No. 4, pp. 803-819.
Wai R. J., and Muthusamy R., (2013), “Fuzzy-Neural-Network Inherited Sliding-Mode Control for Robot Manipulator Including Actuator Dynamics”, IEEE Trans. Neural Netw. Learn. Syst., Vol. 24, No. 2, pp. 274-287.
Wai, R. J. and Yang, Z. W., (2008), “Adaptive fuzzy neural network controldesign via a T-S fuzzy model for a robot manipulator including actuator dynamics”, IEEE Trans. Syst., Man, Cybern. B, Vol. 29, No. 5, pp. 583–591.
Chen, C. S., (2008), “Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators”, IEEE Trans. Control Syst. Technol., Vol. 55, No. 9, pp. 3402–3414.
Wang, L. Chai, T., and Zhai, L. (2009), “Neural network based terminal sliding-mode control of robotic manipulators including actuator dynamics,” IEEE Trans. Ind. Electron., Vol. 56, No. 9, pp. 3296–3304.
Yi S. Y., and Chung, M. J., (1997), “A robust fuzzy logic controller for robot manipulators with uncertainties,” IEEE Trans. Syst., Man, Cybern., B, Vol. 27, No. 4, pp. 706–713.
Gupta, M. M., Jin, L., and Homma, N., (2004), “Static and dynamic neural networks from fundamentals to advanced theory”, John Wiley & Sons.
Aleksander, I., & Morton, H, (1990), “An introduction to neural computing” (Vol. 3), London, Chapman & Hall
Kasabov, N. K., (1996), “Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering”, Marcel Alencar.
Gurney, K., (1997), “An introduction to neural networks”, CRC press.
Freeman, J. A., and Skapura, D. M., (1991), “Neural networks, algorithms, applications, and programming techniques”, Addison-Wesley Publishing Company, USA.
Fateh, M.M. and Khorashadizadeh, S., (2012), “Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty”, Nonlinear Dyn. Vol. 69, pp. 1465–1477.
Chien, M. C. and Huang, A. C., (2006), “Regressor-Free Adaptive Impedance Control of Flexible-Joint Robots Using FAT,” Proceedings of the 2006 American Control Conference, pp. 3904-3909.
Chien, M. C., and Huang, A. C., (2012), “Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix”, Robotica, Vol. 30, pp. 133–144.
Chien, M. C. and Huang, A. C., (2004), “Adaptive impedance control of robot manipulators based on function approximation technique,” Robotica, Vol. 22, pp. 395–403.
Chen, P. C., and Huang, A. C., (2005), “Adaptive multiple-surface sliding control of non-autonomous active suspension systems based on function approximation technique,” J. Vib. Control , Vol. 11, pp. 685–706.
Huang, A. C., Wu, S. C., and Ting, W. F., (2006), “An FAT-based adaptive controller for robot manipulators without regressor matrix: Theory and experiments,” Robotica, Vol. 24, pp. 205–210.
Huang, A. C. and Liao, K. K., (2006), “FAT-based adaptive sliding control for flexible arms, theory and experiments,” J. Sound Vibration, Vol. 298, pp. 194–205.
Chien, M. C., and Huang, A.C., (2007), “Adaptive control of electrically-driven robot without computation of regressormatrix,” J. Chin. Inst. Eng., Vol. 30, No. 5, pp. 855–862.
Chien M. C., and Huang, A. C., (2009), “FAT-Based Adaptive Visual Servoing for Robots with Time Varying Uncertainties,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3700–3705.
Huang, A. C., and Chien, M. C., (2009), “Design of a Regressor-Free Adaptive ImpedanceController for Flexible-Joint Electrically-Driven Robots,” Proceedings of the IEEE International Conference Industrial Electronics and Applications, pp. 17–22.
Izadbakhsh, A. and Fateh, M. M., (2008), “A Model-Free robust control approach for robot manipulator”, International Journal of Mechanical Systems Science and Engineering, Vol. 1, No.1, pp. 32-37.
Khorashadizadeh, S., and and Fateh, M. M., (2014), “Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimtion”, Nonlinear Dyn, doi: 10.1007/s11071-014-1730-5.
Talole S. E., Kolhe J. P., and Phadke S. B., (2012), “Extended- State-Observer-Based Control of Flexible-Joint System with Experimental Validation”, IEEE Trans. Industrial Electronics, Vol. 57, No. 4, pp. 1411-1419.
Chen W. H., Ballance D. J., Gawthrop P. J., and O’Reilly J., (2000), “A Nonlinear Disturbance Observer for Robotic Manipulators”, IEEE Trans. Industrial Electronics, Vol. 47, No. 4, pp. 932-938.
Chen, W. H., (2004), “Disturbance Observer Based Control for Nonlinear Systems”, IEEE/ASME Trans. Mechatronics, Vol. 9, No. 4, pp. 706-710.
Oya, M., Su, C. Y., and Kobayashi, T., (2004), “State Observer-Based Robust Control Scheme for Electrically Driven Robot Manipulators”, IEEE Trans. Robotics, Vol. 20, No. 4, pp. 796-804.
Liu, C. S., and Peng, H., (2000), “Disturbance Observer-Based Tracking Control”, Journal of Dynamic Systems, Measurement, and Control, Vol. 122, pp. 332-335.
Yang, Z. J., Fukushima, Y., and Qin, P. (2012), “Decentralized Adaptive Robust Control of Robot Manipulators Using Disturbance Observers”, IEEE Trans. Control Syst. Technol., Vol. 20, No. 5, pp. 1357-1365.
Yih, C. C., (2012), “Extended Nicosia–Tomei velocity observer-based robot-tracking control”, IET Control Theory and Applications, Vol. 6, No. 1, pp. 51-61.
Wit, C. C. D., and Fixot, N., (1991), “Robot Control via Robust Estimated State Feedback”, IEEE Trans. Automat. Contr., Vol. 36, No. 12, pp. 1497-1501.
Kreisselmeier, G., (1977), “Adaptive Observers with Exponential Rate of Convergence”, IEEE Trans. Automat. Contr., Vol. AC-22, No.1, pp. 2-8.
Fateh, M. M., (2008), "On the voltage-based control of robot manipulators", Int. J. Control. Autom. Syst. Vol. 6, No. 5, pp.702–712.
Fateh, M.M., and Khorashadizadeh, S., (2012), "Optimal Robust voltage control of electrically driven robots", Nonlinear Dyn. Vol. 70, pp. 1445–1458.
Fateh, M. M. (2009). “Robust Control of Electrical Manipulators by Reducing the Effects of Uncertainties”, World Applied Sciences Journal, Vol. 7, pp. 161-167.
Fateh, M. M. (2010). “Robust fuzzy control of electrical manipulators”, Journal of Intelligent & Robotic Systems, Vol. 60, No. (3-4), pp. 415-434.
Fateh, M. M., & Fateh, S. (2013). “Fine-tuning fuzzy control of robots”, Journal of Intelligent and Fuzzy Systems, Vol. 25, No. 4, pp. 977-987.
Ogata, K. (1995). “Discrete-time control systems” Englewood Cliffs, NJ: Prentice Hall.
Qi R., Brdys, M. A., (2008), “Stable indirect adaptive control based on discrete-time T–S fuzzy model”, Fuzzy Sets and Systems, Vol. 159, pp. 900 – 925.
Sun, F., Li. L., Li, H. X., and Liu, H., (2007) “Neuro-Fuzzy Dynamic-Inversion-Based Adaptive Control for Robotic Manipulators—Discrete Time Case”, IEEE Trans. Industrial Electronics, Vol. 54, No. 3, pp. 1342-1351.
Ge, S. S., Zhang, J., and Lee, T. H., (2004), “Adaptive Neural Network Control for a Class of MIMO Nonlinear Systems With Disturbances in Discrete-Time”, IEEE Trans. Syst., Man, Cybern., B, Vol. 34, No. 4, pp. 1630–1645.
Alanis, A. Y., Sanchez, E. N., and Loukianov, A. G., (2007), “Discrete-Time Adaptive Backstepping Nonlinear Control via High-Order Neural Networks”, IEEE Trans. Neural Netw., Vol. 18, No. 4, pp. 1185–1195.
Veseli´, B. C., c-Draženovi´, B. P., and Milosavljevi, C., (2010), “Improved Discrete-Time Sliding-Mode Position Control Using Euler Velocity Estimation”, IEEE Trans. Industrial Electronics, Vol. 57, No. 11, pp. 3840-3847.
Veseli´, B. C., c-Draženovi´, B. P., and Milosavljevi, C., (2008), “High-Performance Position Control of Induction Motor Using Discrete-Time Sliding-Mode Control”, IEEE Trans. Industrial Electronics, Vol. 55, No. 11, pp. 3809-3817.
Castaneda, C. E., Loukianov, A. G., Sanchez, E. N., and Toledo, B. C., (2012), “Discrete-Time Neural Sliding-Mode Block Control for a DC Motor With Controlled Flux”, IEEE Trans. Industrial Electronics, Vol. 59, No. 2, pp. 1194-1207.