فهرست:
فهرست جدولها ح
فهرست شکلها ط
فصل 1- مقدمه.. 1
1-1- ویژگیهای گرافن.. 2
1-2- معرفی آشکارساز نوری مبتنی بر ساختار GL-GNR-GL.. 5
1-3- پیکربندی پایاننامه.. 8
فصل 2- مروری بر تحقیقات انجام شده. 11
2-1- خلاصه پیشی
نه پژوهشی.. 11
2-1-1- تاریخچه مختصری از گرافن و فرآیندهای فیزیکی آن تحت تابش.... 11
2-1-2- خلاصه تحقیقات انجام گرفته بر روی آشکارسازهای نوری گرافنی.. 14
2-2- دینامیک حاملهای فوق سریع در گرافن پمپ شده به صورت الکتریکی یا نوری.. 18
2-3- نرخ تولید و بازترکیب حاملها برای پراکندگی فونون دروندرهای و بین درهای در گرافن 21
2-3-1- مبانی نظری.. 22
2-3-2- نتیجه محاسبات نرخ تولید و بازترکیب... 24
2-4- فرآیند تولید و بازترکیب حاملها و آسایش انرژی در گرافن تحت تابش.... 25
فصل3- تحلیل زمانی آشکارساز مبتنی بر ساختار GL-GNR-GL.. 32
3-1- گرافن.. 32
3-2- شبکه مستقیم.. 36
3-3- شبکه ی معکوس.... 37
3-4- ساختار باندی الکترونیکی.. 39
3-5- پراکندگی انرژی تنگ بست... 42
3-6- انرژی فرمی.. 44
3-7- پراکندگی خطی انرژی و چگالی حاملها 45
3-8- نانوروبان گرافن.. 49
3-9- دینامیک آسایش حاملها و بازترکیب در پمپ نوری گرافن.. 50
3-10- وارونگی جمعیت در گرافن تحت پمپ نوری.. 51
3-10- 1- بررسی وضعیت با دمای الکترونیکی پایین.. 51
3-10-2- بررسی وضعیت با دمای الکترونیکی بالا.. 53
3-11- تحلیل آشکارساز نوری زیر قرمز مبتنی بر ساختار GL-GNR-GL.. 53
3-11- 1- مدل دیود نوری GL-GNR-GL و معادلات مربوطه.. 56
3-11-2- جریان نوری و جریان تاریک.... 58
3-12- معادلات مربوط به پاسخ ضربه.. 59
3-13- پاسخ زمانی به تابع پله.. 65
3-14 پاسخ زمانی به پالس.... 68
فصل 4- نتیجهگیری و پیشنهادها 71
4-1- نتیجهگیری.. 71
4-2- پیشنهادها 72
فهرست منابع: 73
منبع:
[1] E. Ahmadi , A. Asgari, and K. Ahmadiniar, “The optical responsivity in IR-photodetector based on armchair graphene nanoribbons with p–i–n structure”, Superlattices and Microstructures, vol. 52 ,pp. 605–611, 2012.
[2] M. Ambrosio, “Nanotechnology: A new era for photodetection?”, Nuclear Instruments and Methods in Physics Research, vol. 610,pp. 1-10,2009.
[3] E. Pince, Graphene based high frequency electronics, Bilkent university, Turkey, Aug 2010.
[4] A. Iaizzi , Ab initio study of the properties of folded armchair graphene nanoribbons, Ithaca College, United States, May 2011.
[5] W. Choi, and J. Lee, Graphene synthesis and applications, 1st Edition, CRC Press, 2012.
[6] F. Xia, T. Mueller, Y.Lin, and P. Avouris, “Graphene Nanophotonics”, Lasers and Electro-Optics Society, IEEE LEOS Annual Meeting - PHO, pp. 76-77, 2010.
[7] T. Otsuji, S. A. Boubanga Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, and V Ryzhii, “Graphene-based devices in terahertz science and technology”, Applied Physics, vol. 45, no. 30, 2012.
[8] E. Ahmadi, A. Asgari, “Theoretical Calculation of Optical Absorption Spectrum for Armchair Graphene Nanoribbon”, Procedia Engineering, vol. 8, pp.25–29, 2011.
[9] V. Ryzhii ,T. Otsuji, N. Ryabova, M. Ryzhii, V. Mitin ,and V. Karasik, “ Concept of infrared photodetector based on graphene–graphene nanoribbon structure”, Infrared Physics & Technology ,2013.
[10] F. Rana, P. A. George, J. H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in grapheme”, Physical Review , vol. 79, pp. 1-6, 2009.
[11] R.S. Shishir, D.K. Ferry, S.M. Goodnick, “Room temperature velocity saturation in intrinsic graphene”Journal of Physics: Conf. Ser. 193, 2009.
[12] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer “Measurement of ultrafast carrier dynamics in epitaxial graphene”, Aapplied physics letters, vol. 92, pp. 1-4, 2008
[13] K. S. Novoselov, A. K. Geim,S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. Firsov, ‘‘Two-dimensional gas of massless Dirac fermions in graphene’’, Nature, vol. 438, pp. 197–200, 2005.
[14] Y. Zhang, Y.W. Tan, H. L. Stormer, and P. Kim, ‘‘Experimental observation of the quantum hall effect and Berry’s phase in graphene”, Nature, vol. 438, pp. 201–204, 2005.
[15] F. Schwierz, ‘‘Graphene transistors’’, Nature Nanotechnol., vol. 5, pp. 487–486, 2010.
[16] T. Mueller, F. Xia, and P. Avouris, ‘‘Graphene photodetectors for high-speed optical communications’’, Nature Photon., vol. 4, pp. 297–301, 2010.
[17] V. Ryzhii, ‘‘Terahertz plasma waves in gated graphene heterostructures’’, Jpn. J.Appl. Phys., vol. 45, pp. L923–L925, 2006.
[18] F. Rana, ‘‘Graphene terahertz plasmon oscillators,’’ IEEE Trans. Nanotechnol., vol. 7, no. 1, pp. 91–99, Jan. 2008.
[19] A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, ‘‘Terahertz laser with optically pumped graphene layers and Fabri-Perot resonator,’’ Appl. Phys. Exp., vol. 2, pp. 092301-1–092301-3, 2009.
[20] V. Ryzhii, A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, ‘‘Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,’’ J. Appl. Phys., vol. 107, pp. 054505-1–054505-5, 2010.
[21] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, ‘‘Broadband graphene terahertz modulators enabled by intraband transitions,’’ Nature Commun., vol. 3, pp. 780–786, 2012.
[22] H. Suzuura and T. Ando, ‘‘Zone-boundary phonon in graphene and nanotube,’’ J. Phys. Soc. Jpn., vol. 77, pp. 044703-1–044703-11, 2008.
[23] M. Breusing, C. Ropers, and T. Elsaesser, ‘‘Ultrafast carrier dynamics in graphite,’’ Phys. Rev. Lett., vol. 102, pp. 086809-1–086809-4,2009.
[24] M. Ryzhii and V. Ryzhii, ‘‘Injection and population inversion in electrically induced p-n junction in graphene with split gates,’’ Jpn. J. Appl. Phys., vol. 46, pp. L151–L153, 2007.
[25] V. Ryzhii, M. Ryzhii, and T. Otsuji, ‘‘Negative dynamic conductivity of graphene with optical pumping,’’ J. Appl. Phys., vol. 101, pp. 083114-1–083114-4, 2007.
[26] A. Satou, S. A. Boubanga Tombet, T. Otsuji, and V. Ryzhii, ‘‘Study of threshold behavior of stimulated terahertz emission from optically pumped graphene’’, OTST: Int. Conf. on Optical Terahertz Science and Technology, 2011.
[27] H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji,‘‘Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials’’, J. Infrared Milli. Terahertz. Waves, vol. 32, no. 5, pp. 655-665, 2011.
[28] T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, ‘‘Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene’’, Phys. Rev. Lett. vol. 108,2012.
[29] H. Wang, J. H. Strait, P. A. George, Sh. Shivaraman, V. B. Shields et al, “Ultrafast relaxation dynamics of hot optical phonons in graphene”, Applied Physics Letters, vol. 96, 2010.
[30] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Toward the creation of terahertz graphene injection laser”, J. Appl. Phys. vol. 110, 2011.
[31] A. Satou, T. Otsuji, and V. Ryzhii, “Theoretical Study of Population Inversion in Graphene under Pulse Excitation”, Japanese Journal of Applied Physics, vol. 50, 2011.
[32] J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, “ Very Slow Cooling Dynamics of Photoexcited Carriers in Graphene Observed by Optical-Pump Terahertz-Probe Spectroscopy”, Nano Lett., vol. 11, no. 11, pp 4902–4906, 2011.
[33] V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of Heating and Cooling of Photogenerated Electron–Hole Plasma in Optically Pumped Graphene on Population Inversion”, Japanese Journal of Applied Physics, vol. 50, 2011.
[34] ] L.A. Falkovsky and A.A. Varlamov, “Space-time dispersion of graphene conductivity”, European Physical Journal ,vol. 56, pp. 281-284, 2006.
[35] V. V. Cheianov and V. I. Fal’ko, “Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene”, Physical Review , vol. 74,pp1-4. ,2006.
[36] M. Ryzhii, V. Ryzhii , T. Otsuji, V. Mitin, and M. S. Shur, “Electrically-induced n-i-p junctions in multiple graphene layer structures”, Physical Review , vol. 82, pp. 1-6, 2010.
[37] F.T. Vasko and V. Ryzhii, “Photoconductivity of an intrinsic graphene”, Physical Review, vol. 77, pp. 1-8, 2008.
[38] F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast Graphene Photodetector,” Nature Nanotechnology, vol. 4, pp. 839 - 843 ,2009.
[39] V. Ryzhii ,T. Otsuji, N. Ryabova, M. Ryzhii, and V. Mitin, “ Device model of Graphene nanoribbon phototransistor” , Applied physics express, vol.1, pp.1-3, 2008.
[40] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer Structures”, Journal Of Applied Physics, vol. 107,pp. 1-7, 2010.
[41] M. Ryzhii, T. Otsuji, V. Mitin, and V. Ryzhii, “ Characteristics of p–i–n Terahertz and Infrared Photodiodes Based on Multiple Graphene Layer Structures”, Japanese Journal of Applied Physics, vol. 50 , pp1-6, 2011.
[42] V. Ryzhii , M. Ryzhii , N. Ryabova , V. Mitin, and T. Otsuji , “Terahertz and infrared detectors based on graphene structures”, Infrared Physics & Technology, vol. 54 , pp.302–305, 2011.
[43] V. Ryzhii, N. Ryabova, M. Ryzhii, N.V. Baryshnikov, V.E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures” , Opto−Electronics Rrview, vol.20, pp. 15-25, 2012.
[44] A. Urich, K. Unterrainer, and T. Mueller, “ Intrinsic Response Time of Graphene Photodetectors”, Nano Letters, vol. 11, pp. 2804–2808, 2011.
[45] A. Satou, T. Otsuji, V. Ryzhii, and F. T. Vasko, “Terahertz Negative Dynamic Conductivity in Optically Pumped Graphene”, PIERS Proceedings, Kuala Lumpur, MALAYSIA, March 2012.
[46] H. S. PhilipWong, D. Akinwande, Carbon Nanotube and Graphene Device Physics,Cambridge University press,1st edition, 2011.