فهرست:
فصل اول 1
1-1 .آنزیم کولین اکسیداز 2
1-1-1. معرفی آنزیم.. 2
1-1-2. تاریخچه. 2
1-1-3. واکنش آنزیمی.. 3
1-1-4. جایگاه فعال آنزیم.. 3
1-1-5. اهمیت مطالعه. 4
1-2. زیست حسگر 7
1-2-1. نسل اول.. 8
1-2-2. نسل دوم. 9
1-2-3. نسل سوم. 10
1-3. تکنیکهای الکتروشیمیایی 10
1-3-1. ولتامتری یا آمپرومتری.. 10
1-3-2. ولتامتری چرخهای.. 11
1-3-3.کرونو آمپرومتری.. 12
1-4. نانولولههای کربنی 13
1-4-1. معرفی.. 13
1-4-2. ساختار. 13
1-4-3. خواص ویژه نانولولههای کربنی.. 14
1-4-4. انواع نانولولههای کربنی.. 15
1-4-5. سنتز نانولولههای کربنی.. 19
1-4-5-1. قوس الکتریکی.. 19
1-4-5-2. سایش لیزری.. 20
1-4-5-3. رسوب دهی با بخار شیمیائی.. 21
1-4-6. خالص سازی نانولولههای کربنی 23
1-4-6-1. اکسیداسیون.. 23
1-4-6-2. اسید کاری.. 24
1-4-6-3.آنیل کردن.. 24
1-4-6-4. استفاده از ارتعاشات مافوق صوت.. 24
1-4-6-5. تصفیه مغناطیسی.. 25
1-4-6-6. میکروفیلتراسیون.. 25
1-4-7. عاملدار کردن نانولولههای کربنی 25
1-4-7-1. ضرورت عاملدار کردن نانولولهها و روشهای آن.. 26
1-4-7-2. روشهای تائید عاملدار شدن نانولولهها 27
1-4-7-2-1. طیف سنجی رامان.. 27
1-4-7-2-2. طیف سنجیFT-IR.. 30
1-5. استفاده از مایعات یونی به عنوان پایدار کنندهها 31
1-6. هدف از انجام پژوهش: 34
فصل دوم. 36
مواد و روشها 36
2-1. مواد. 37
2-2. تجهیزات و دستگاهها: 38
2-3-1. عاملدار کردن نانولولهها 39
2-3-2. تهیه سوسپانسیون نانولوله کربنی.. 40
2-3-3. آماده سازی الکترود. 40
2-3-4. روش تثبیت... 41
2-3-5. مطالعات ولتامتری فیلم پروتئین 41
2-3-6. اندازه گیری فعالیت آنزیم 42
2-3-7. تهیه تصاویر میکروسکوپ الکترونی 43
فصل سوم. 44
نتایج.. 44
3-1. میزان عاملدار شدن نانولولهها 45
3-2. مورفولوژی سطح الکترودهای اصلاح شده با نانولولهها 50
3-3 . انتقال الکترون مستقیم آنزیم روی الکترودهای اصلاح شده با نانولوله 55
3-4. میزان برگشت پذیری واکنش اکسید و احیاء آنزیم 57
3-5. میزان آنزیم الکترواکتیو روی الکترودهای اصلاح شده با نانولولهها 57
3-6. تثبیت موثر آنزیم بر نانولولههای کربنی 58
3-7. سرعت انتقال الکترون آنزیم تثبیت شده بر نانولوله و مایع یونی 61
3-8. فعالیت الکتروکاتالیزوری آنزیم روی الکترودهای اصلاح شده با نانولولههای کربنی 63
فصل چهارم. 66
بحث و پیشنهادات.. 66
4-1. عاملدار شدن نانولولهها 67
4-2. مقایسه پارامترهای آنالیتیکی حسگرهای طراحی شده با سه نوع نانولوله کربنی 69
4-2-1. محدوده خطی.. 70
4-2-2. حساسیت... 71
4-2-3. حد تشخیص.... 72
4-3. مقایسه انتقال الکترون آنزیم 72
4-3-1. میزان آنزیم الکتروفعال تثبیت شده روی نانولولههای کربنی.. 73
4-3-2.ثابت سرعت ظاهری الکترون (ks) 74
4-3-3. مقایسه میزان تغییرات پتانسیل فرمال در سه نوع زیست حسگر. 75
4-4. نتیجه گیری 77
منبع:
1. M. Daenen, R.D.d.F, B. Hamers, P.G.A. Janssen, The Wondrous World of Carbon Nanotubes. Eindhoven University of Technology, 2003.
2. Chaplin, M., What are biosensors? Faculty of Engineering, Science and the Built Environment, 20 December, 2004.
3. Sharareh Sajjadia, H.-A.R.-P., Parvaneh Rahimib, Hedayatollah and A.-H.K. Ghourchianb, Electrochemistry and Electrocatalysis of Choline Oxidase Based on Ionic-liquid/NH2-MWCNTs Nano-composite. 2011.
4. Niyogi, S., et al., Chemistry of single-walled carbon nanotubes. Accounts of chemical Research, 2002. 35(12): p. 1105-1113.
5. S. Lutz-Wahl, et al., Performance of d-amino acid oxidase in presence of ionic liquids Journal of Biotechnology, 2006. 124(1): p. 163-171.
6. Bernheim, F. and M.L.C. Bernheim, Oxidation of acetylcholine by tissues. American Journal of Physiology--Legacy Content, 1933. 104(2): p. 438.
7. Bernheim, F. and M.L.C. Bernheim, The choline oxidase of liver. American Journal of Physiology--Legacy Content, 1937. 121(1): p. 55.
8. IKUTA, S., et al., Purification and characterization of choline oxidase from Arthrobacter globiformis. Journal of Biochemistry, 1977. 82(6): p. 1741.
9. F. Fan, a.G.G., An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase. Biochemistry, 2007. 46: p. 6402-6408.
10. Northrop, D.B., Enzymatic mechanisms. Vol. 27. 1999: Ios Pr Inc.
11. Umezawa, T., et al., Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 2006. 17(2): p. 113-122.
12. Sharma, P. and R. Shanker Dubey, Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. Journal of plant physiology, 2005. 162(8): p. 854-864.
13. Hoffmann, Vitamin Nutrition for poultry Chapter 15 " choline" Animal Health and Nutrition 1989: La Roche-Inc.
14. Zhang, S., H. Zhao, and R. John, Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors--theoretical and practical considerations. Biosensors and Bioelectronics, 2001. 16(9-12): p. 1119-1126.
15. Cremisini, C., et al., Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Analytica Chimica Acta, 1995. 311(3): p. 273-280.
16. McDonald, P., J. Greenhalgh, and C. Morgan, Animal nutrition. 2002: Addison-Wesley Longman Ltd.
17. Workel, H., et al., Choline-The rediscovered vitamin. poultry international, 1999. 38: p. 44-47.
18. Kidd, M., P. Ferket, and J. Garlich, Nutritional and osmoregulatory functions of betaine. World's Poultry Science Journal, 1997. 53(2): p. 125-140.
19. Griffiths, D. and G. Hall, Biosensors--what real progress is being made? Trends in biotechnology, 1993. 11(4): p. 122-130.
20. Turner, A.P.F., I. Karube, and G.S. Wilson, Biosensors: fundamentals and applications. 1987: Oxford University Press, USA.
21. Clark, L.C., The enzyme electrode. Biosensors: Fundamentals and Applications, 1987. 1: p. 3-12.
22. Turner, M.F.C.a.A.P.F., The realisation of electron transfer from biological molecules to electrods Biosensors: Fundamentals and Applications, 1987. 15: p. 257-275.
23. Bartlet, P.N., The use of electrochemical in the study of modified electrodes Biosensors: Fundamentals and Applications, 1987. 13 p. 211-246.
24. Bartlett, P.N. and R.G. Whitaker, Strategies for the development of amperometric enzyme electrodes. Biosensors, 1988. 3(6): p. 359-379.
25. Bard, A.J. and L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley& Sons. Inc., New York, 2001.
26. Van Benschoten, J.J., et al., Cyclic voltammetry experiment. Journal of Chemical Education, 1983. 60(9): p. 772.
27. Cranston, W.J.A.a.D.H., Amperometric enzyme electrodes. Biosensors: Fundamentals and Applications, 1987. 12: p. 180-210.
28. Ye, L., et al., High current density" wired" quinoprotein glucose dehydrogenase electrode. Analytical Chemistry, 1993. 65(3): p. 238-241.
29. Georgakilas, V., et al., Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc, 2002. 124(48): p. 14318-9.
30. Heinze, T., Emergence of nano S&T in Germany: network formation and company performance. 2006: ISI.
31. Giorcelli, M., Growth and characterization of Carbon Nanotubes by CVD system.
32. sinnat, s., B., Andrews, R., Qian, D., Rao, A, M., Mao, Z., Dickey, E, C., and Derbyshire, F., Chem,, Carbon Nanotubes (CNTs) Production, Characterisation and Its Applications. Phys,Lett., , 1999. 315: p. 25-30.
33. Journet, C.a.B., P.,, Influence of tunneling voltage on the imaging of carbon nanotube rafts by scanning tunneling microscopy Applied Physics A- Materials Science &Processing, 1998. 67(1): p. 1-9.
34. Rao, A.M., et al., Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 1997. 275(5297): p. 187-91.
35. Ajayan, P.M., Nanotubes from Carbon. Chem Rev, 1999. 99(7): p. 1787-1800.
36. CHENG Jin, Z.x.-p., ZHANG Hong-dan, Synthesis of bamboo-like carbon nanotubes by ethanol catalytic combustion technique. Science Press, 2006. 16: p. 435-437.
37. Yasuda, A., Kawase,Noboru, and Mizutani, Wataru, , Article Formation Mechanism of Carbon-Nanocapsules and -Nanoparticles Based on the In-Situ Observation. Journal of Physical Chemistry, 2002106(51).
38. Jung, S., H., Kim, M, R.,Jeong, S.,H., Kim, S, U., Lee, O. J., Lee, K. H., Suh, J, H., and Park, C, K.,, High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Applied Physics A- Materials Science &Processing, 2003. 76(2): p. 285-286.
39. Ebbesen, T. and P. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358(6383): p. 220-222.
40. lee, s.J., Baik, Hong Koo, Yoo, Jae eun, and Han, Jong hoon, , Large-scale synthesis of carbon nanotubes by plasma rotating arc discharge technique. Diamond and Related materials, 2002. 11: p. 3-6.
41. Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T, lchihashi, T., and Iijima, S., , Journal of Physical Chemistry, 1999. 103(30).
42. Maser, W., K., Munoz, E., Benito. A. M., Martinez., M. T., de la Fuente, G, F., Maniette, Y., Anglaret, E., and Sauvajul, J, L., , Synthesis of carbon nanotubes by laser ablation in graphite substrate of industrial arc electrodes. Chemical Physics Letters, 1998. 292(4,5,6).
43. Scott, C., D., Arepalli, S., Nikolaev, P., and Smally , R, E., , Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Applied Physics A- Materials Science &Processing, 2001. 72(5).
44. Ren, z., F., Huang, Z, P., Wang, D, Z., Wen, J, G., Xu, J, W., Wang, J, H., Calvert, L, E., Chen, J., Klemic, J, F., and Reed, M, A.,, Controlled deposition of carbon nanotubes on a patterned substrate. Applied Physics letters, 1999. 75(8).
45. Ren, Z.F., et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998. 282(5391): p. 1105-7.
46. Lian, Y., et al., Nondestructive and high-recovery-yield purification of single-walled carbon nanotubes by chemical functionalization. The Journal of Physical Chemistry B, 2004. 108(26): p. 8848-8854.
47. Chiang, I., et al., Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). The Journal of Physical Chemistry B, 2001. 105(35): p. 8297-8301.
48. Hou, P.X., Liu, C., Tong, Y, Liu, M., and Cheng, H, M., , Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. Journalof Materials Research, 2001. 16(9): p. 2526-2529.
49. Kajiura, H., Tsutsui, S., Huang, H, J., and Murakami, Y., , Improved Oxidation Resistance of Single-Walled Carbon Nanotubes Produced by Arc Discharge in a Bowl-like Cathode. Chemical Physics Letters, 2002. 364(5-6): p. 586-592.
50. Moon, J., M., An, K, H., Lee, Y, H., Park, Y, S., Bae, D, J., and Park, G, S., , The Effect of Gas Adsorption on the Field Emission Mechanism of Carbon Nanotubes. Journal of Physical Chemistry, 2001. 105(24): p. 5677-5681.
51. Bandow, S., et al., Purification of single-wall carbon nanotubes by microfiltration. The Journal of Physical Chemistry B, 1997. 101(44): p. 8839-8842.
52. Le Thiên-Nga, et al., Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano letters, 2002. 2(12): p. 1349-1352.
53. Farkas, E., Anderson,M, E., Chen, Z, H., and Rinzler, A, G., , High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Chemical Physics Letters, 2002. 363(1-2): p. 111-116.
54. Niyogi, S., et al., Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). Journal of the American Chemical Society, 2001. 123(4): p. 733-734.
55. Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes--the route toward applications. Science, 2002. 297(5582): p. 787-92.
56. Hirsch, A., Functionalization of Carbon Nanotubes. Springer-Verlag Berlin Heidelberg 2005, 2005. 245: p. 193–237.
57. Skoog, D.A., F.J. Holler, and T.A. Nieman, Principles of instrumental analysis. 1980: Saunders college Fort Worth, TX.
58. M.S. Dresselhausa, G.D., R. Saitoc,A. Joriod, Raman spectroscopy of carbon nanotubes. Physics Reports, 2004.
59. Skoog, D.A. and J.J. Leary, Principles of Instrumental Analysis. Clinical Chemistry-Reference Edition, 1994. 40(8): p. 1612.
60. Tricas, N., et al., Influence of carbon black amorphous phase content on rubber filled compounds. Composites science and technology, 2003. 63(8): p. 1155-1159.
61. Gosav, S., et al., Class identity assignment for amphetamines using neural networks and GC-FTIR data. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006. 64(5): p. 1110-1117.
62. Plechkova, N.V. and K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2007. 37(1): p. 123-150.
63. Wasserscheid, P. and T. Welton, Ionic liquids in synthesis. Vol. 2. 2003: Wiley Online Library.
64. Dupont, J., et al., Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Organic syntheses, 2002. 79: p. 236-243.
65. Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 1999. 99(8): p. 2071-2084.
66. Rahimi, P., et al., Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry. Biosensors and Bioelectronics, 2010. 25(6): p. 1301-1306.
67. Yao, Y. and K.K. Shiu, Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Analytical and bioanalytical chemistry, 2007. 387(1): p. 303-309.
68. Anik, Double- walled carbon nanotube based carbon pasete electrode as xanthine biosensors. microchemica Acta, 2009. 166.
69. Chekin, F., leivo, N, directelectrochemistry and bioelectrocatalysis of a class II non- symbiotic plant hemoglobin imobilised on screen printed carbon electrods. Anal Bioanal Chem, 2010. 398(4): p. 1643-9.
70. Ma, W. and D. Tian, Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix. Bioelectrochemistry, 2010. 78(2): p. 106-112.
71. Tijskens, L., et al., The kinetics of pectin methyl esterase in potatoes and carrots during blanching. Journal of food engineering, 1997. 34(4): p. 371-385.
72. CHANG YUAN HU, F.Y.L., LI HUA and RONG BIN ZHANG, A study concerning the pretreatment of CNTs and its influence on the performance of NiB/CNTs amorphous catalyst. J. Serb. Chem. Soc., 2006. 71(11): p. 1153–1160.
73. Bishun N. Khare, M.M., Alan M. Cassell, Cattien V. Nguyen, and and J. Han, Functionalization of Carbon Nanotubes Using Atomic Hydrogen from a Glow Discharge. NANO LETTERS, 2001. 2: p. 73-77.
74. Zhao, W.W.H.-H.J.G.-C., A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim Acta, 2009. 164: p. 167–171.75. Yang Liu, L.S., Meijia Wang, Zhiying Li, Hongtao Liua and Jinghong Li, A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application. Green Chemistry, 2005.
76. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, 1979. 101(1): p. 19-28.
77. Borowiak-Palen, S.C.a.E., Raman Study on Doped Multiwalled Carbon Nanotubes. ACTA PHYSICA POLONICA A, 2009. 116.
78. Jia, G., et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental science & technology, 2005. 39(5): p. 1378-1383.
79. Tkac, J. and T. Ruzgas, Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochemistry communications, 2006. 8(5): p. 899-903.
80. Mariotti, M.P., et al., Strategies for developing NADH detector based on meldola blue in different immobilization methods: a comparative study. Journal of the Brazilian Chemical Society, 2006. 17(4): p. 689-696.
81. Shervedani, R.K. and S. Pourbeyram, Electrochemical determination of calf thymus DNA on Zr (IV) immobilized on gold-mercaptopropionic-acid self-assembled monolayer. Bioelectrochemistry, 2010. 77(2): p. 100-105.
82. Zhuang, Z., et al., Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Overoxidized Polypyrrole/Graphene Modified Electrodes. Int. J. Electrochem. Sci, 2011. 6: p. 2149-2161.
83. Thomsen, V., D. Schatzlein, and D. Mercuro, Limits of detection in spectroscopy. Spectroscopy, 2003. 18(12): p. 112-114.
84. Charlot, G., et al., Les réactions électrochimiques. Journal of The Electrochemical Society, 1960. 107: p. 204C.