فهرست:
سرطان. 6
درمان سرطان. 8
گیرنده TrkB وعملکردآن. 9
Trk B وسرطان. 11
ساختار Trk B.. 12
سایتهای اتصال یابنده در رسپتور Trk. 13
فاکتورهای نئوروترفیک وعملکرد آنها 13
پروتئین BDNFوعملکردآن. 15
داروهای مهارکننده Trk B.. 17
پپتید درمانی.. 17
بیوانفورماتیک... 28
فلوسایتومتری.. 29
Western Blot 30
مواد و روشها 32
طراحی کتابخانه پپتیدی.. 33
ایجاد اسکلتهای انعطاف پذیر پپتیدی.. 34
طبقه بندی پپتیدهای تولیدشده براساس انرژی.. 35
انتخاب بهترین پپتیدها براساس انرژی.. 36
ایجاد ساختار سه بعدی پایدارترین پپتیدها 36
اتصال پپتیدهای طراحی شده باگیرندهTrk B.. 36
بررسی اندرکنشهای پپپتیدی و رسپتور. 38
بخش ازمایشگاهی.. 38
محلولها 38
کشت سلولی.. 38
پاساژسلولی (sub-culture) 39
سلولهای چسبنده. 39
سلولهای سوسپانت.. 40
فریز کردن. 40
طرزتهیهFBS دکمپلمان برای استفاده درکشت سلولی.. 41
ذوب کردن. 41
شمارش سلولی.. 41
MTT Assay. 42
غلظتهای استفاده شده برای پپتید. 43
فلوسایتومتری.. 43
استخراج پروتئین.. 44
مواد مورد استفاده برای جمع آوری کردن(Harvest) سلول. 45
اندازهگیری پروتئین با روش برادفورد. 47
مراحل وسترن بلاتینگ... 47
آماده سازی ژلSDS-PAGE 48
آماده کردن پروتئینها برای Loading در SDS-PAGE.. 50
مرحله ترانسفر. 51
Preparation of solutions. 52
آماده کردن کاغذ pvdf 53
مرحله بلات کردن. 53
طراحی کتابخانه پپتیدی.. 55
IC50% سلولها 57
پیشگویی ساختار سه بعدی.. 58
تداخل لیگاند - رسپتور. 59
آمینواسیدهای شرکت کننده دراندرکنش... 61
نمایش اندرکنشهای گیرنده Trk Bبا پپتیدهای طراحی شده. 62
بررسی اثر توکسیک پپتیدهای سنتزشده با آزمون بقا سلول. 65
نتایج فلوسایتومتری.. 71
نتایج وسترن بلات.. 77
اندرکنشهای پپتیدها و رسپتور. 79
بحث.. 82
منابع 90
منبع:
1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011. CA: A Cancer Journal for Clinicians. 2011;61(4):212-36.
2. Rodu B, Cole P. The fifty-year decline of cancer in America. Journal of clinical oncology. 2001;19(1):239-41.
3. McPhee SJ, Papadakis MA, Rabow MW. Current medical diagnosis & treatment 2010: McGraw-Hill Medical; 2010.
4. Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. International Journal of Cancer. 1975;15(4):617-31.
5. Ames BN. Identifying environmental chemicals causing mutations and cancer. Jurimetrics J. 1979;20:326.
6. Hill M, Hawksworth G, Tattersall G. Bacteria, nitrosamines and cancer of the stomach. British journal of cancer. 1973;28(6):562.
7. Issenberg P, editor. Nitrite, nitrosamines, and cancer. Federation proceedings; 1976.
8. Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. New England Journal of Medicine. 1997;336(20):1401-8.
9. Ford D, Easton D, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. American journal of human genetics. 1998;62(3):676.
10. Levine AJ. The tumor suppressor genes. Annual review of biochemistry. 1993;62(1):623-51.
11. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8):2013-26.
12. Osborne C, Wilson P, Tripathy D. Oncogenes and Tumor Suppressor Genes in Breast Cancer: Potential Diagnostic and Therapeutic Applications. The Oncologist. 2004;9(4):361.
13. Latif F, Tory K, Gnarra J, Yao M, Duh F-M, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science (New York, NY). 1993;260(5112):1317.
14. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin H, Liebermann DA, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9(6):1799.
15. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994;78(5):773.
16. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science (New York, NY). 1995;269(5224):682.
17. Ehrlich M. Cancer-linked DNA hypomethylation and its relationship to hypermethylation. DNA Methylation: Development, Genetic Disease and Cancer. 2006:251-74.
18. Choi SH, Worswick S, Byun HM, Shear T, Soussa JC, Wolff EM, et al. Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. International Journal of Cancer. 2009;125(3):723-9.
19. Shao C, Lacey M, Dubeau L, Ehrlich M. Hemimethylation footprints of DNA demethylation in cancer. Epigenetics. 2009;4(3):165-75.
20. BOZKURT C, BOZKURT S, ARDA N, ERTEM AU, ŞAHİN G, YÜKSEK N, et al. P16 and p27 tumor suppressor gene methylation status in childhood Wilms tumor cases. TurkJMedSci. 2011;41(4):633-8.
21. Suzuki Y, Tamura G, Satodate R, Fujioka T. Infrequent Mutation of p53 Gene in Human Renal Cell Carcinoma Detected by Polymerase Chain Reaction Single‐strand Conformation Polymorphism Analysis. Cancer science. 1992;83(3):233-5.
22. Lim D-S, Hasty P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Molecular and cellular biology. 1996;16(12):7133-43.
23. Wittekind C, Compton CC, Greene FL, Sobin LH. TNM residual tumor classification revisited. Cancer. 2002;94(9):2511-6.
24. Varricchio CG. A cancer source book for nurses: Jones & Bartlett Learning; 2004.
25. Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207-14.
26. Strong LC. Genetic etiology of cancer. Cancer. 2006;40(S1):438-44.
27. Lingeman C. Etiology of cancer of the human ovary: a review. Journal of the National Cancer Institute. 1974;53(6):1603.
28. Kufe DW, Pollock RE, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, et al. Holland-Frei cancer medicine. 2003.
29. Alfreda L, Claudiab S, Svend G, Norbertd G, Peterb K. Complementary and alternative treatment methods in children with cancer: A population-based retrospective survey on the prevalence of use in Germany. Eur J Cancer. 2008;44:2233-40.
30. Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Peptide Science. 2002;66(3):184-99.
31. Lien S, Lowman HB. Therapeutic peptides. Trends in biotechnology. 2003;21(12):556-62.
32. Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug resistance updates. 2003;6(6):363-71.
33. Zhang B, Zhang Y, Wang J, Zhang Y, Chen J, Pan Y, et al. Screening and identification of a targeting peptide to hepatocarcinoma from a phage display peptide library. Molecular Medicine. 2007;13(5-6):246.
34. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. New England Journal of Medicine. 1993;329(17):1219-24.
35. Shu Y-Z. Recent natural products based drug development: a pharmaceutical industry perspective. Journal of natural products. 1998;61(8):1053-71.
36. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic peptides: science and market. Drug discovery today. 2010;15(1):40-56.
37. Gordon EM, Kerwin JF. Combinatorial chemistry and molecular diversity in drug discovery: Wiley-Liss New York; 1998.
38. Crawford M, Woodman R, Ferrigno PK. Peptide aptamers: tools for biology and drug discovery. Briefings in Functional Genomics & Proteomics. 2003;2(1):72-9.
39. Saxena SK, Saxena S, Saxena R, Arvinda M, Swamy AG, Nair MP. Emerging Trends, Challenges and Prospects in Antiviral Therapeutics and Drug Development for Infectious Diseases. Electronic Journal of Biology. 2010;6(2):26-31.
40. Hicke BJ, Stephens AW, Gould T, Chang Y-F, Lynott CK, Heil J, et al. Tumor targeting by an aptamer. Journal of Nuclear Medicine. 2006;47(4):668-78.
41. Nagant C, Tré-Hardy M, El-Ouaaliti M, Savage P, Devleeschouwer M, Dehaye J-P. Interaction between tobramycin and CSA-13 on clinical isolates of Pseudomonas aeruginosa in a model of young and mature biofilms. Applied microbiology and biotechnology. 2010;88(1):251-63.
42. Vincenti MP, Clark IM, Brinckerhoff CE. Using inhibitors of metalloproteinases to treat arthritis. Easier said than done? Arthritis & Rheumatism. 1994;37(8):1115-26.
43. Leszczyńska K, Namiot A, Cruz K, Byfield F, Won E, Mendez G, et al. Potential of ceragenin CSA‐13 and its mixture with pluronic F‐127 as treatment of topical bacterial infections. Journal of applied microbiology. 2011;110(1):229-38.
44. Flowers LO, Subramaniam PS, Johnson HM. A SOCS-1 peptide mimetic inhibits both constitutive and IL-6 induced activation of STAT3 in prostate cancer cells. Oncogene. 2005;24(12):2114-20.
45. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. The universal protein resource (UniProt). Nucleic Acids Research. 2005;33(suppl 1):D154-D9.
46. Klein R, Nanduri V, Jing S, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66(2):395.
47. Klein R, Lamballe F, Bryant S, Barbacid M. The< i> trk B tyrosine protein kinase is a receptor for neurotrophin-4. Neuron. 1992;8(5):947-56.
48. Barbacid M. Neurotrophic factors and their receptors. Current opinion in cell biology. 1995;7(2):148-55.
49. Zirrgiebel U, Ohga Y, Carter B, Berninger B, Inagaki N, Thoenen H, et al. Characterization of TrkB Receptor‐Mediated Signaling Pathways in Rat Cerebellar Granule Neurons: Involvement of Protein Kinase C in Neuronal Survival. Journal of neurochemistry. 1995;65(5):2241-50.
50. Islam O, Loo TX, Heese K. Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Current Neurovascular Research. 2009;6(1):42-53.
51. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell stem cell. 2011;8(1):59-71.
52. Encinas M, Iglesias M, Llecha N, Comella J. Extracellular‐Regulated Kinases and Phosphatidylinositol 3‐Kinase Are Involved in Brain‐Derived Neurotrophic Factor‐Mediated Survival and neuritogenesis of the Neuroblastoma Cell Line SH‐SY5Y. Journal of neurochemistry. 2002;73(4):1409-21.
53. Gaiddon C, Loeffler J, Larmet Y. Brain‐Derived Neurotrophic Factor Stimulates AP‐1 and Cyclic AMP‐Responsive Element Dependent Transcriptional Activity in Central Nervous System Neurons. Journal of neurochemistry. 1996;66(6):2279-86.
54. Ito Y, Yamamoto M, Li M, Mitsuma N, Tanaka F, Doyu M, et al. Temporal expression of mRNAs for neuropoietic cytokines, interleukin-11 (IL-11), oncostatin M (OSM), cardiotrophin-1 (CT-1) and their receptors (IL-11Rα and OSMRβ) in peripheral nerve injury. Neurochemical research. 2000;25(8):1113-8.
55. Labouyrie E, Dubus P, Groppi A, Mahon FX, Ferrer J, Parrens M, et al. Expression of neurotrophins and their receptors in human bone marrow. The American journal of pathology. 1999;154(2):405-15.
56. Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 2005;105(11):4429-36.
57. Desmet C, Peeper D. The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? Cellular and molecular life sciences. 2006;63(7):755-9.
58. Marchetti A, Felicioni L, Pelosi G, Del Grammastro M, Fumagalli C, Sciarrotta M, et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Human mutation. 2008;29(5):609-16.
59. Zhang Z, Han L, Liu Y, Liang X, Sun W. Up-regulation of Tropomyosin related kinase B contributes to resistance to detachment-induced apoptosis in hepatoma multicellular aggregations. Molecular biology reports. 2009;36(5):1211-6.
60. Huang EJ, Wilkinson GA, Fariñas I, Backus C, Zang K, Wong SL, et al. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development. 1999;126(10):2191-203.
61. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annual review of neuroscience. 2001;24:677.
62. Goodness TP, Albers KM, Davis FE, Davis BM. Overexpression of nerve growth factor in skin increases sensory neuron size and modulates Trk receptor expression. European Journal of Neuroscience. 2006;9(8):1574-85.
63. HICKS RR, LI C, ZHANG L, DHILLON HS, PRASAD MR, SEROOGY KB. Alterations in BDNF and trkB mRNA levels in the cerebral cortex following experimental brain trauma in rats. Journal of neurotrauma. 1999;16(6):501-10.
64. Siwak DR, Carey M, Hennessy BT, Nguyen CT, McGahren Murray MJ, Nolden L, et al. Targeting the epidermal growth factor receptor in epithelial ovarian cancer: current knowledge and future challenges. Journal of oncology. 2009;2010.
65. Thiele CJ, Li Z, McKee AE. On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clinical cancer research. 2009;15(19):5962-7.
66. Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, et al. Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clinical cancer research. 2011;17(7):1741-52.
67. Middlemas D, Lindberg R, Hunter T. trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors. Molecular and cellular biology. 1991;11(1):143-53.
68. Chao MV. The p75 neurotrophin receptor. Journal of neurobiology. 2004;25(11):1373-85.
69. Banfield MJ, Naylor RL, Robertson AG, Allen SJ, Dawbarn D, Brady RL. Specificity in Trk receptor: neurotrophin interactions: the crystal structure of TrkB-d5 in complex with neurotrophin-4/5. Structure. 2001;9(12):1191-9.
70. Wiesmann C, De Vos A. Nerve growth factor: structure and function. Cellular and molecular life sciences. 2001;58(5):748-59.
71. McInnes C, Sykes BD. Growth factor receptors: structure, mechanism, and drug discovery. Peptide Science. 1998;43(5):339-66.
72. Barbacid M. The Trk family of neurotrophin receptors. Journal of neurobiology. 2004;25(11):1386-403.
73. Huang EJ, Reichardt LF. Trk Receptors: Roles in Neuronal Signal Transduction*. Annual review of biochemistry. 2003;72(1):609-42.
74. Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory. Life sciences. 2002;70(7):735-44.
75. Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental neurobiology. 2010;70(5):289-97.
76. Hyman C, Hofer M, Barde Y-A, Juhasz M, Yancopoulos GD, Squinto SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350(6315):230-2.
77. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T. Dissecting the human< i> BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics. 2007;90(3):397-406.
78. Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, et al. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science (New York, NY). 1990;247(4949 Pt 1):1446.
79. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257-70.
80. Monteleone P, Zanardini R, Tortorella A, Gennarelli M, Castaldo E, Canestrelli B, et al. The 196G/A (val66met) polymorphism of the BDNF gene is significantly associated with binge eating behavior in women with bulimia nervosa or binge eating disorder. Neurosci Lett. 2006 Oct 2;406(1-2):133-7.
81. Foltynie T, Lewis SG, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR, et al. The BDNF Val 66 Met polymorphism has a gender specific influence on planning ability in Parkinson’s disease. Journal of neurology. 2005;252(7):833-8.
82. Dempster E, Toulopoulou T, McDonald C, Bramon E, Walshe M, Filbey F, et al. Association between BDNF val66 met genotype and episodic memory. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2005;134(1):73-5.
83. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of neuroscience. 2003;23(17):6690-4.
84. Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nature neuroscience. 2007;10(9):1089-93.
85. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science. 2001;293(5529):493-8.
86. Kunugi H, Ueki A, Otsuka M, Isse K, Hirasawa H, Kato N, et al. A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer's disease. Molecular psychiatry. 2001;6(1):83.
87. Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R, et al. Signal transduction mediated by the truncated trkB receptor isoforms, trkB. T1 and trkB. T2. The Journal of neuroscience. 1997;17(8):2683-90.
88. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM. Expression and function of TRK-B and BDNF in human neuroblastomas. Molecular and cellular biology. 1994;14(1):759-67.
89. Knüsel B, Hefti F. K‐252 Compounds: Modulators of Neurotrophin Signal Transduction. Journal of neurochemistry. 2006;59(6):1987-96.
90. Nagappan G, Lu B. Activity-dependent modulation of the BDNF receptor TrkB: mechanisms and implications. Trends in neurosciences. 2005;28(9):464-71.
91. Evans AE, Kisselbach KD, Liu X, Eggert A, Ikegaki N, Camoratto AM, et al. Effect of CEP‐751 (KT‐6587) on neuroblastoma xenografts expressing TrkB. Medical and pediatric oncology. 2001;36(1):181-4.
92. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer research. 2002;62(22):6462-6.
93. Zhang L, Hu Y, Sun C, Huang J, Chu Z. Brain-derived neurotrophic factor promotes the secretion of MMP-9 in human myeloma cell through modulation of nucleus factor-kappaB]. Zhonghua xue ye xue za zhi= Zhonghua xueyexue zazhi. 2008;29(4):243.
94. Nguyen N, Lee SB, Lee YS, Lee K-H, Ahn J-Y. Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochemical research. 2009;34(5):942-51.
95. Baldelli P, Forni PE, Carbone E. BDNF, NT‐3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons. European Journal of Neuroscience. 2008;12(11):4017-32.
96. Pirogova E, Istivan T, Gan E, Cosic I. Advances in methods for therapeutic peptide discovery, design and development. Curr Pharm Biotechnol. 2011 Aug;12(8):1117-27.
97. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA. De novo peptide sequencing via tandem mass spectrometry. Journal of Computational Biology. 1999;6(3-4):327-42.
98. Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, et al. A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics. 2006;22(14):e481-e8.
99. Waldmann TA. Monoclonal antibodies in diagnosis and therapy. Science (New York, NY). 1991;252(5013):1657.
100. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nature biotechnology. 2005;23(9):1147-57.
101. Karacay H, Brard P-Y, Sharkey RM, Chang C-H, Rossi EA, McBride WJ, et al. Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clinical cancer research. 2005;11(21):7879-85.
102. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL, Eissa NT. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nature medicine. 2009;15(3):267-76.
103. Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current opinion in pharmacology. 2006;6(5):468-72.
104. Cohen J. Bioinformatics—an introduction for computer scientists. ACM Computing Surveys (CSUR). 2004;36(2):122-58.
105. Aoki-Kinoshita KF. An introduction to bioinformatics for glycomics research. PLoS computational biology. 2008;4(5):e1000075.
106. Street GC, Aires AABBB, Town C, Melbourne KKKLM. Introduction to bioinformatics. 2002.
107. Jones NC, Pevzner PA. An introduction to bioinformatics algorithms: MIT press; 2004.
108. Quirke P. Introduction to Flow Cytometry. Journal of Clinical Pathology. 1992;45(3):275.
109. Watson JV. Introduction to flow cytometry: Cambridge University Press; 2004.
110. Schroeder GM, SWARTZENDRUBER DE. Introduction to flow cytometry: University of Colorado at Colorado Springs; 1988.
111. Marti GE, Stetler-Stevenson M, Bleesing JJ, Fleisher TA, editors. Introduction to flow cytometry. Seminars in hematology; 2001: Elsevier.
112. Ormerod MG. Flow cytometry: Wiley Online Library; 2006.
113. Dennis-Sykes CA, Miller WJ, McAleer WJ. A quantitative Western Blot method for protein measurement. Journal of biological standardization. 1985;13(4):309-14.
114. Ripley BD. The R project in statistical computing. MSOR Connections The newsletter of the LTSN Maths, Stats & OR Network. 2001;1(1):23-5.
115. Smith CA, Kortemme T. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design. PLoS One. 2011;6(7):e20451.
116. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Research. 2007;35(suppl 2):W375-W83.
117. http://web.expasy.org/protparam/.
118. De Vries SJ, Van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. nature protocols. 2010;5(5):883-97.
119. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 Feb;8(2):127-34.
120. DeLano WL. The PyMOL molecular graphics system. 2002.
121. DeLano WL. PyMOL. San Carlos, CA: DeLano Scientific. 2002.