فهرست:
فصل 1- مقدمه. 1
1-1- پیشگفتار 1
1-2- تاریخچهی روشهای تشخیص و پیشبینی عیب... 9
1-2-1- تاریخچهی مطالعات روشهای برپایهی مدل.. 10
1-2-1-1- تاریخچهی مطالعات روشهای عیبیابی با مدل کمی.. 10
1-2-1-2- تاریخچهی مطالعات روشهای عیبیابی با مدل کیفی.. 12
1-2-2- تاریخچهی روشهای برپایهی حافظهی فرآیند. 17
1-2-2-1- تاریخچهی روشهای کیفی برپایهی حافظهی فرآیند. 17
1-2-2-2- تاریخچهی روشهای کمی برپایهی حافظهی فرآیند. 19
1-3- روشهای نوین عیبیابی.. 23
1-3-1- روشهای نوین بر پایهی داده 23
1-3-1-1- روشهای نوین آنالیز حوزهی زمان-فرکانس.... 23
1-3-1-2- روشهای نوین طبقهبندیکننده 25
1-3-1-3- روشهای نوین آماری 27
1-3-2- روشهای نوین بر پایهی مدل.. 29
1-3-2-1- روشهای نوین برپایهی مدل، سیستمهای خطی.. 29
1-3-2-2- روشهای نوین برپایهی مدل، سیستمهای غیرخطی.. 31
1-4- هدف و مراحل گردآوری.. 34
فصل 2- روشهای برپایهی مدل در سیستمهای غیر خطی.. 37
2-1- مقدمه 37
2-2- دستهبندی روشهای برپایهی مدل عیبیابی سیستمهای غیرخطی.. 38
2-2-1- روشهای هندسی.. 38
2-2-2- رویتگر تطبیقی.. 41
2-2-3- رویتگر مقاوم 44
2-2-3-1- رویتگرهای مقاوم برپایهی سیستمهای فازی.. 44
2-2-3-2- رویتگرهای مقاوم برپایهی شبکههای عصبی.. 48
2-2-3-3- اضافه کردن ترم مقاوم به رویتگر تطبیقی.. 57
2-2-4- رویتگر مود لغزشی.. 64
2-3- جبران عیب در سیستمهای غیرخطی.. 71
2-4- خلاصه و نتیجهگیری از فصل.. 72
فصل 3- جمعبندی.. 73
3-1- نتیجه گیری.. 73
3-2- پیشنهادات... 74
فهرست مراجع.. 76
منبع:
Chiang, E. L. Russell, and R. D. Braatz, Fault Detection and Diagnosis in Industrial Systems. Springer, 2001.
[[1]] M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. Springer, 2007.
[[1]] S. Simani, C. Fantuzzi, and R. J. Patton, Model-Based Fault Diagnosis in Dynamic Systems using Identification Techniques. Springer, 2002.
[[1]] I. Izadi Najaf Abadi, “Fault diagnosis in sampled-data systems”,Ph. D. Dissertation, Dept. ECE, University of Alberta, Edmonton, Fall 2006.
[[1]] M. D. Shah, “Fault detection and diagnosis in nuclear power plant- a brief introduction”, International Conference on current trends in technology, NuiCone, 2011.
[[1]] S. Katipamula, M. Brambley, “Methods for fault detection, diagnostics, and prognostics for building systems- a review”, International Journal of HVAC&R research, vol.11, no.2, Apr. 2005.
[[1]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part I: Quantitative model-based methods”, Computers & Chemical Engineering 27, pp. 293-311, Apr. 2002.
[[1]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part III: Process history based methods”, Computers & Chemical Engineering 27, pp. 327-346, Apr. 2002.
[[1]] V. Venkatasubramanian, R. Rengaswamy, K. Yin and S. N. Kavuri, “A review of process fault detection and diagnosis Part II: Qualitative models and search strategies”, Computers & Chemical Engineering 27, pp. 313-326, Apr.2002.
[[1]] F. P. Lees, “ Loss prevention in pocess industries : hazard identification, assessment and control. London, Butterworth-Heinemann, 1996.
[[1]] R. Patton, P. Frank and R. Clark, Fault diagnosis in dynamic systems. Prentice Hall, 1989.
[[1]] M. Basseville, “Detecting changes in signals and systems- a survey”, Automatica, vol.24, no.3, 309-326, 1988.
[[1]] M. Basseville, and I. V. Nikiforov, “Detection of abrupt changes_ theory and application”, Prentice Hall, 1993.
[[1]] P. M. Frank, S. X. Ding, and T. Marcu, “Model-based fault diagnosis in technical processes”, Transaction of the institution of measurement and control, vol.22, no.1, pp.57-101, 2000.
[[1]] D. M. Himmelblau, Fault detection and diagnosis in chemical and petrochemical processes. Elsevier Scientific Pub. Co., 1978.
[[1] ] R. Isermann, “Process faults detection based on modeling and estimation methods-a survey”, Automatica, vol.20, no.4, pp.387-404.
[[1]] J. Gertler, and D. Singer, “A new structural framework for parity equation-based failure detection and isolation”, Automatica, vol.26, pp.381-388, 1990.
[[1]] H. Yang, and M. Saif, “Nonlinear adaptive observer design for fault detection”, In proceeding of American Control Conference, Washingtone, pp.1136-1139, 1995.
[[1]] M. Soroush, “State and parameter estimation and their applications in process control”, Computer and chemical engineering, vol.23, pp.229-245, 1998.
[[1]] K. Watanabe, and D. M. Himmelblau, “Instrument fault detection in systems with uncertainties”, International Journal System Science, vol.13, no.2, pp.137-158, 1982.
[[1]] K. Watanabe, and D. M. Himmelblau, “Fault diagnosis in nonlinear chemical processes_part I: Theory”, AIChE, vol.29, no.2, pp.243-249, 1983.
[[1]] K. Watanabe, and D. M. Himmelblau, “Incipient fault diagnosis of nonlinear processes with multiple causes of faults”, Chemical engineering scince, vol.39, no.3, pp.491-508, 1984.
[[1]] Y. Huang, S. Dash, G. V. Rektailis, and V. Venkatasubramanian, “EKF based estimator for FDI in Model IV FCCU”, IFAC proceedings of safe process, Hungary, 2000.
[[1]] S. Dash, S. Kantharao, R. Rengaswamy, and V. Venkatasubramanian, “Application and evaluation of a linear/restricted nonlinear observer to a nonlinear CSTR”, European symposium on computer aided process engineering, Denmark, pp.853-858, 2001.
[[1] ] V. Venkatasubramanian, and S. H. Rich, “An object-oriented two-tier architecture for engineering compiled and deep-level knowledge for process diagnosis”, Computer and chemical engineering, vol. 12, no. 9/10, pp.903-921, 1988.
[[1]] R. Davis, “Diagnosis reasoning based on structure and behavior” Artificial intelligence, vol. 24, no. 1/3, pp.347-410, 1984.
[[1]] M. Iri, K. Aoki, E. O’Shima, and H. Matsuyama, “An algorithm for diagnosis of system failures in the chemical process”, Computers and Chemical Engineering, vol. 3, no. 1/4, pp.489-493, 1979.
[[1]] T. Umeda, T. Kuriyama, E. O’shima, & H. Matsuyama, “A graphical approach to cause and effect analysis of chemical processing systems”, Chemical engineering science, vol. 35, no.12, pp.2379-2388, 1980.
[[1]] M. Kokawa, M. Satoshi, & S. Shigai, “Fault location using digraph and inverse direction search with application”, Automatica, vol.19, no.6, pp.729-735, 1983.
[[1]] M. A. Kramer, & B. L. Palowitch, “A rule based approach to fault diagnosis using the signed directed graph”, American institute of chemical engineers journal, vol. 33, no. 7, pp.1067-1078,1987.
[[1]] C. C. Chang, & C. C. Yu, “On-line fault diagnosis using the signed directed graph”, Industrial and engineering chemistry research, vol. 29, no.7, pp.1290-1299, 1990.
[[1]] N. A. Wilcox, & D. M. Himmelblau, “Possible cause and effect graphs (PCEG) model for fault diagnosis II. Applications”, Computers and chemical engineering, vol. 18, no. 2, pp. 117-127, 1994.
[[1]] E. Tarifa, & N. Scenna, “Fault diagnosis, directed graphs, and fuzzy logic”, Computers and chemical engineering, vol.21, pp. 649-654, 1997.
[[1]] H. Kim, & K. Lee, “Fuzzy implications of fuzzy cognitive map with emphasis on fuzzy causal relationship and fuzzy partially causal relationship”, Fuzzy sets and systems, vol. 97, no. 3, pp.303-313, 1998.
[[1]] A. Genovesi, J. Harmand, & J. P. Steyer, “A fuzzy logic based diagnosis system for the on-line supervision of an anaerobic digestor pilot-plant”, Biochemical engineering Journal, vol. 3, no. 3, pp.171-183, 1999.
[[1]] R. Li, & X. Wang, “Qualitative/quantitative simulation of process temporal behavior using clustered fuzzy digraphs”, American institute of chemical engineers Journal, vol.47, no.4, pp.906-919, 2001.
[[1]] N. H., Ulerich, & G. A. Powers, “Online hazard aversion and fault diagnosis in chemical processes: the digraph/fault tree method”, IEEE Transactions on Reliability vol.37, no.2, pp.171-177, 1988.
[[1]] Y. Iwasaki, & H. A. Simon, “Causality in device behavior”, Artificial Intelligence, vol.29, no.1, pp. 3-32, 1986.
[[1]] P. R. Prasad, J. F. Davis, Y. Jirapinyo, J. R. Josephson, & M. Bhalodia, “Structuring diagnostic knowledge for large-scale process systems”, Computers and chemical engineering, vol. 22, no. 12, pp. 1897-1905, 1998.
[[1]] S. H. Rich, V. Venkatasubramanian, M. Nasrallah, & C. Matteo, “Development of a diagnostic expert system for a whipped toppings process”, Journal of loss prevention in the process industries, vol.2, no.3, pp.145-154, 1989.
[[1]] W. Becraft, & P. Lee, “An integrated neural network/expert system approach for fault diagnosis”, Computers and chemical engineering, vol. 17, no. 10, pp.1001-1014. 1993.
[[1]] J. T. Cheung, & G. Stephanopoulos, “Representation of process trends part I. A formal representation framework”, Computers and chemical engineering, vol. 14, no. 4/5, pp.495-510, 1990.
[[1]] J. E. Jackson, A user’s guide to principal components.Wiley-Interscience,1991.
[[1]] T. W. Anderson, An introduction to multivariate statistical analysis. Wiley, 1984.
[[1]] S. Qin, “Recursive PLS algorithm for adaptive data monitoring”, Computers and chemical engineering, vol.22, no.4/5 , pp.503-514, 1998.
[[1]] B. Bakshi, “Multiscale PCA with application to multivariate statistical process monitoring”, American institute of chemical engineers Journal, vol.44, no.7, pp.1596-1610, 1998.
[[1]] K. Fukunaga, Introduction to statistical pattern recognition. Academic press, 1972.
[[1]] E. Parzen, “On the estimation of probability density function and the mode” ,Annals of mathematical statistics, vol.33 , pp.1065-1076, 1962.
[[1]] V. Venkatasubramanian, & K. Chan, “A neural network methodology for process fault diagnosis”, American institute of chemical engineers Journal, vol.35, no.12, pp.1993-2002, 1989.
[[1]] D. Liu, Y. Zhao, B. Yang, and J. Sun, “A New motor fault detection method using multiple window S-method time-frequency analysis”, International Conference on Systems and Informatics, 2012.
[[1]] S. Rajagopalan, J. M. Aller, and J. A. Restrepo, “Diagnosis of rotor faults in brushless DC (BLDC) motors operating under non-stationary conditions using windowed Fourier ridges”, Conf. Rec. 40th IEEE IAS, pp.26-33, 2005.
[[1]] S. Rajagopalan, J. A. Restrepo, and J. M. Aller, “Wigner-Ville distributions for detection of rotor faults in brushless DC (BLDC) motors operation under non-stationary conditions”, 5th IEEE International Symposium, SDEMPED, 2005.
[[1] ] M. Blodt, M. Chabert, and J. Regnier, “Mechanical load faul detection in induction motors by stator current time-frequency analysis”, IEEE Transactions on Industry Applications, vol.42, no.6, pp.1454-1463 ,2006.
[[1]] S. Rajagopalan, J. A. Restrepo, and J. M. Aller, “Nonstationary motor fault detection using recent quadratic time-frequency representations”, IEEE Transactions on Industry Applications, vol.44, no.3, pp.735-744, 2008.
[[1]] K. Kim, and A. G. Parlos, “Induction motor fault diagnosis based on neuropredictors and wavelet signal processing,” IEEE/ASME Transactions on Mechartronics, vol.7, no.2, pp.201-219, 2002.
[[1]] R. M. Tallam, L. Sang Bin, G. C. Stone, G. B. Kliman, Y. Jiyoon, T. G. Habetler, and R. G. Harley, “A survey of methods for detection of stator-related faults in induction machines,” IEEE Trans. on industry application, vol. 43, no. 4, pp. 920–933, 2007.
[[1]] A. Gandhi, T. Corrigan, and L. Parsa, “Recent advances in modeling and online detection of stator interturn faults in electrical motors”, IEEE Trans. on industrial electronics, vol. 58, no. 5, pp. 1564–1575, 2011.
[[1]] J. Cusido, L. Romeral, J. A. Ortega, J. A. Rosero, and A. Garcia Espinosa, “Fault detection in induction machines using power spectral density in wavelet decomposition”, IEEE Trans. on industrial electronics, vol. 55, no. 2, pp. 633–643, 2008.
[[1]] A. Bouzida, O. Touhami, R. Ibtiouen, A. Belouchrani, M. Fadel, and A. Rezzoug, “Fault diagnosis in industrial induction machines through discrete wavelet transform,” IEEE Trans. on industrial electronics, vol. 58, no. 9, pp. 4385–4395, 2011.
[[1]] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Single-Turn fault detection in induction machine using complex-wavelet-based method”, IEEE Trans. on industry application, vol. 48, no. 6, 2012.
[[1]] M. I. Khalil, “Neural network based fault diagnosis procedure for the detector system of CFDF”, Journal of computer and science technology, vol. 10, no. 3, pp.137–142, 2010.
[[1]] J. Zarei, L. Mahmoodi, M. A. Tajeddini, “ Intelligent Bearing Fault Diagnosis based
on Vibration Analysis”, ICECC2012.
[[1]] E. Tafazzoli, and M. Saif, “Application of combined support vector machines in process fault diagnosis,” in Proc. Am. Contr. Conf., pp. 3429–3433, 2009.
[[1]] H. J. Chang, D. S. Song, P. J. Kim, and J. Y. Choi, “Spatiotemporal Pattern Modeling for Fault Detection and Classification in Semiconductor Manufacturing”, IEEE Trans on Semiconductor manufacturing , vol. 25, no. 1, 2012.
[[1]] A. Soualhi, G. Clerc, H. Razik, and O. Ondel, “Detection of induction motor faults by an improved artificial ant clustering”, in Proc. 37th IEEE IECON, pp. 3446–3451, 2011.
[[1]] A. Soualhi, G. Clerc, and H. Razik, “Detection and diagnosis of faults in induction
motor using an improved artificial ant clustering technique”, IEEE Trans. on industrial
electronics, vol. 60, no. 9, pp. 4053-4062, 2013.
[[1]] V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, and B. Maglaris, “Hierarchical anomaly detection in distributed large-scale sensor networks,” in Proc. IEEE ISCC, pp. 761–767, 2006.
[[1]] D. X. Tien, K. W. Lim, and L. Jun, “Comparative study of PCA approaches in process monitoring and fault detection” in Proc. IECON, vol. 3, pp. 2594–2599, 2004.
[[1]] S. Lane, E.Martin, A.Morris, and P. Gower, “Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process,” IEEE Trans. on instrumentation and measurement, vol. 25, no. 1, pp. 17–35, 2003.
[[1]] W. Li, H. Yue, S. Valle-Cervantes, and S. Qin, “Recursive PCA for adaptive process monitoring,” Journal of Process Control, vol. 10, no. 5, pp. 471–486, 2000.
[[1]] S. C. Chan, H. C. Wu, and K. M. Tsui, “Robust recursive eigendecomposition and subspace-based algorithms with application to fault detection in wireless sensor networks”, IEEE Trans. on instrumentation and measurement, vol. 61, no. 6, pp. 1703–1718, 2012.
[[1]] L. Ljung, System Identification—Theory for the User.Prentice-Hall, 1987.
[[1]] M. Zhong, S. X Ding, Q.L. Han, and Q. Ding, “Parity space-based Ffault estimation fo linear discrete time-varying systems”, IEEE Trans. on Automatic Control, vol. 55, no. 7, pp.1726-1731, 2010.
[[1]] S. X. Ding, Model-based fault diagnosis techniques. Springer, 2008
[[1]] M. Verhaegen and V. Verdult, Filtering and System Identification: A least squares approach. Cambridge Univ. Press, 2007.
[[1]] J. Dong and M. Verhaegen, “Identification of fault estimation filter from I/O data for systems with stable inversion,” IEEE Trans. Automatic Control, vol. 57, no. 6, pp. 1347–1361, 2011.
[[1]] A. Chiuso, “On the relation between CCA and predictor-based subspace identification”, IEEE Trans. Automatic Control, vol. 52, pp. 1795–1812, 2007.
[[1]] S. Ding, P. Zhang, A. Naik, E. Ding, and B. Huang, “Subspace method aided data-driven design of fault detection and isolation systems”, Journal of Process Control, vol. 19, pp. 1496–1510, 2009.
[[1]] N. Liu and K. Zhou, “Optimal robust fault detection for linear discrete time systems”, in Proc. 46th IEEE Conf. Decis. Control, pp. 989–994, 2007.
[[1]] H. Liu and G. Yang, “Fault detection observer design for linear discrete- time systems in finite frequency domain”, in Proc. 46th IEEE Conf. Decision Control, pp. 378–383. 2007.
[[1]] M. Mahmoud, “Sufficient conditions for the stability of input delayed discrete time fault tolerant control systems,” in Proc. IEEE Int. Conf. Control Appl., pp. 504–509, 2008.
[[1]] X. G. Yan and C. Edwards, “Adaptive sliding-mode-observer-based fault reconstruction for nonlinear systems with parametric uncertainties,” IEEE Trans. on iddustrial electronics, vol. 55, no. 11, pp. 4029–4036, 2008.
[[1]] X. G. Yan and C. Edwards, “Nonlinear robust fault reconstruction and estimation using a sliding mode observer,” Automatica, vol. 43, no. 9, pp. 1605–1614, 2007.
[[1]] B. T. Thumati, and S. Jagannathan, “A model-based fault-detection and prediction scheme for nonlinear multivariable discrete-time systems with asymptotic stability guarantee”, IEEE Trans. on Neural Network, vol. 21, no. 3, pp.404-423, 2010.
[[1]] H. Dong, Z. Wang, J. Lam, , and H. Gao, “Fuzzy-model-based robust fault detection
with stochastic mixed time delays and successive packet dropouts”, IEEE Trans. on
Systems, Man, and Cybernetics, vil. 42, no. 2, pp. 365-376, 2012.
[[1]] F. Caccavale and L. Villani, Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances. Springer, 2003.
[[1]] Y. Zhao, J. Lam, and H.J. Gao, “Fault detection for fuzzy systems with intermittent measurements”, IEEE Trans. on Fuzzy System, vol.17, no. 2, pp. 298-410, 2009.
[[1]] D. Zhang, L. Yu, and Q. G. Wang, “Fault detection for network-based nonlinear systems with communication constraints and missing measurements”, 8th Asian Control Conference, pp.180-186, 2011.
[[1]] H. Hammouri, P. Kabore, S. Othman, and J. Biston, “Failure diagnosis and nonlinear observer. Application to a hydraulic process”, Journal of Franklin Inst., vol. 339, no. 4–5, pp. 455–478, 2002.
[[1]] B. Jiang and F. N. Chowdhury, “Parameter fault detection and estimation of a class of nonlinear systems using observers”, Journal of Franklin Inst., vol. 342, no. 7, pp. 725–736, 2005.
[[1]] M. L. McIntyre, W. E. Dixon, D. M. Dawson, and I. D.Walker, “Fault identification for robot manipulators,” IEEE Trans. on Robotics and Automation, vol. 21, no. 5, pp. 1028–1034, 2005.
[[1]] F. Caccavale, and L.Villani, “An adaptive observer for fault diagnosis in nonlinear discrete-time systems,” in Proc. Amer. Control Conf., pp. 2463–2468, 2004.
[[1]] G. Antonelli, F. Caccavale, and L.Villani, “Adaptive discrete-time fault diagnosis for a class of nonlinear systems: Application to a mechanical manipulator,” in Proc. IEEE Int. Symp. Intell. Control, pp.667–672. 2003.
[[1]] B. T. Thumati and S. Jagannathan, “An online approximator-based fault detection framework for nonlinear discrete-time systems,” in Proc. IEEE Conf. Decision Control, pp. 2608–2613, 2007.
[[1]] H. A. Talebi, S. Tafazoli, and K. Khorasani, “A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem,” IEEE Trans. on Neural Network, vol. 20, no. 1, pp. 45–60, 2009.
[[1]] C. De Persis and A. Isidori, “A geometric approach to nonlinear fault detection and isolation” IEEE Trans. Automatic Control, vol. 46, no. 6, pp. 853–865, 2001.
[[1]] X. Zhang, “Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation”, IEEE Trans. on Automatic control, vol.56, no. 5, pp.1220-1226, 2011.
[[1]] J. Zhang, A.K. Swain,and S.K. Nguang, “Detection and isolation of incipient sensor faults for a class of uncertain non-linear systems”, IET Control Theory Appl., vol. 6, iss. 12, pp. 1870–1880, 2012.
[[1]] G. Luders, and K. Narendra, “An adaptive observer and identifier for a linear system”, IEEE Trans. on Automatic Control, vol.8, no.5, pp. 496–499, 1973.
[[1] ] Y. Han, S. Oh, B. Choi, D. Kwak, H.J. Kim, and Y. Kim, “Fault detection and identification of aircraft control surface using adaptive observer and input bias estimator”, IET Control Theory Appl., vol. 6, iss. 10, pp. 136-138, 2012.
[[1]] H. J. Ma, and G. H.Yang, “Detection and adaptive accommodation for actuator faults of a class of non-linear systems”, IET Control Theory Appl., vol. 6, iss. 14, pp. 2292–2307, 2012.
[[1]] A. Xu, and Q. Zhang, “Nonlinear system fault diagnosis based on adaptive estimation”, Automatica, vol.40, pp. 1181 – 1193, 2004.
[[1]] J. P.Gauthier, & I. A. K. Kupka, “ Observability and observers for nonlinear
systems”, SIAM Journal on Controland Optimization, vol.32, no.4, pp. 975–994, 1994.
[[1]] T. Marcu, and L. Mirea, “Robust detection and isolation of process faults using neural network”, IEEE Symposium on Computer-Aided Control System Design, pp.72-79, 1997.
[[1]] J. Chen, C. J. Lopez-Toribio, and R. J. Patton, “Non-linear dynamic systems fault detection and isolation using fuzzy observers”, Journal of Systems and Control Engineering, vol. 213, no. 16, pp. 467-476, 1999.
[[1]] J. Zhao, L. Gao, and Y. Shi, “Robust fault detection for nonlinear systems based on observer”, International Conference on Computer Application and System Modeling, pp.29-33, 2010.
[[1]] D. Blake, and M. Brown, “Simultaneous, multiplicative actuator and sensor fault estimation using fuzzy observers”, in Proc. IEEE Int. Fuzzy Syst. Conf., pp. 1–6, 2007.
[[1]] G. Chunyan, Z. Qing, and D. Guang-Ren, “Multiplicative fault estimation for a type of nonlinear uncertain system”, in Proc. 30th Chinese Control Conf. (CCC), pp. 4355–4360, 2011.
[[1]] I. A. Al-Zyoud, and K. Khorasani, “Neural network-based actuator fault diagnosis for attitude control subsystem of an unmanned space vehicle”, in Proc. World Congr. Computational Intell. (WCCI), pp.3686–3693, 2006.
[[1]] Z. Q. Li, L.Ma, and K. Khorasani, “A dynamic neural network-based reaction wheel fault diagnosis for satellites”, in Proc. World Congr. Computational Intell. (WCCI), pp. 3714–3721, 2006.
[[1]] I. A. Al-Zyoud and K. Khorasani, “Detection of actuator faults using dynamic neural network for the attitude control subsystem of a satellite”, in Proc. Int. Joint Conf. Neural Netw., pp. 1746–1751, 2005.
[[1]] Q.Wu and M. Saif, “Robust fault diagnosis for a satellite system using a neural slidingmode observer,” in Proc. IEEE Conf. Decision Control, pp. 7668–7673, 2005.
[[1]] Q.Wu and M. Saif, “Robust fault diagnosis for a satellite large attitude system using
an iterative neuron pid (inpid) observer,” in Proc. Amer.Control Conf.,pp 5710–5714,
2006
[[1]] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault diagnosis with overlapping decompositions: An adaptive approximation approach,” IEEE Trans. Autom. Control, vol. 54, no. 4, pp.794–799, 2009.
[[1]] X. Zhang, “Decentralized fault detection for a class of large-scale nonlinear uncertain systems,” in Proc. Amer. Control Conf., pp.5650–5655, 2010.
[[1]] Z.Wang and H. Zhang, “Robust fault diagnosis for a class of nonlinear systems”, Journal of Control Theory Appl., vol. 4, no. 3, pp. 245–251, 2006.
[[1]] H. A. Talebi, and K. Khorasani, “A neural network-based multiplicative actuator
fault detection and isolation of nonlinear systems”, IEEE Trans. on control systems
technology, vol. 21, no. 3, pp. 842-851, 2013.
[[1]] B. T. Thumati, G. R. Halligan, and S. Jagannathan, “A Novel fault diagnostics and prediction scheme using a nonlinear observer with artificial immune system as an online approximator”, IEEE Trans. on control systems technology, vol. 21, no. 3, pp. 569-578, 2013.
[[1]] Q. Yang, J. B. Vance, and S. Jagannathan, “Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks”, IEEE Trans on Systems, Man, Cybernetics, vol. 38, no. 4, pp. 994–1001, 2008.
[[1]] C. C. Luh, and W. C. Cheng, “Nonlinear systemidentification using an artificial immune system,” Proc. Inst. Mech. Eng., vol. 215, pt. I, pp. 569–585, 2001.
[[1]] C. Lascu, and G.-D. Andreescu, “Sliding-mode observer and improved integrator with DC-offset compensation for flux estimation in sensorlesscontrolled induction motors,” IEEE Trans. on industrial electronics, vol. 53, no. 3, pp. 785–794, 2006.
[[1]] W. F. Xie, “Sliding-mode-observer-based adaptive control for servo actuator with friction,” IEEE Trans. on industrial electronics, vol. 54, no. 3, pp. 1517–1527, 2007.
[[1]] L. Fridman, Y. Shtessel, C. Edwards, and X. G. Yan, “Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems”, International journal of Robust Nonlinear Control, vol. 18, no. 4/5, pp. 399–412, 2008.
[[1]] C. Edwards, S. K. Spurgeon, and R. J. Patton, “Sliding mode observers for fault detection and isolation”, Automatica, vol. 36, no. 4, pp. 541–553, 2000.
[[1]] C. P. Tan, and C. Edwards, “Sliding mode observers for detection and reconstruction of sensor faults”, Automatica, vol. 38, no. 10, pp. 1815–1821, 2002.
[[1]] T. Floquet, J. P. Barbot, W. Perruquetti, and M. Djemai, “On the robust fault detection via a sliding mode disturbance observer,” International Journal of Control, vol. 77, no. 7, pp. 622–629, 2004.
[[1]] Q. Wu, and M. Saif, “Robust fault Diagnosis of a satellite system using a learning strategy and second order sliding mode observer”, IEEE Systems journal, vol. 4, no. 1, pp. 112-121, 2010.
[[1]] G. H. Yang, S. Y. Zhang, J. Lam, and J. L. Wang, “Reliable control using redundant controllers”, IEEE Trans. on Automatic Control, vol.43, pp. 1588–1593, 1998.
[[1]] H. J. Ma, and G. H. Yang, “Fault-tolerant control synthesis for a class of nonlinear systems: sum of squares optimization approach”, International Journal of Robust Nonlinear Control, vol.19, pp. 591–610, 2009.
[[1]] G. Tao, S. Chen, X. Tang, and S. M. Joshi, Adaptive control of systems with actuator failures. Springer, 2004.
[[1]] C. P. Tan, and C. Edwards, “Sliding mode observers for robust detection and reconstruction of actuator and sensor faults”, International Journal of Robust Nonlinear Control, vol.13, pp. 443–463, 2003.
[[1]] M. L. Corradini, and G. Orlando, “Actuator failure identification and compenation through sliding modes”, IEEE Trans. on Control Systems and Technology, vol. 15, pp. 184–190, 2007.
[[1]] Z. Gao, and S. X. Ding, “Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems”, Automatica, vol.43, pp. 912–920, 2007.
[[1]] D. Ye, and G. H. Yang, “Adaptive fault-tolerant tracking control against actuator faults with application to flight control”, IEEE Trans. on Control and Systems and Technology, vol. 14, pp. 1088–1096, 2006.
[[1]] B. Jiang, M. Staroswiecki, and V. Concquempot, “Fault accommodation for nonlinear dynamic systems”, IEEE Trans. on Automatic Control, vol.51, pp. 1578–1583, 2006.
[[1]] H. Yang, B. Jiang, and V. Cocquempot, “A fault tolerant control framework for periodic switched non-linear systems”, International Journal of Control, vol. 82, no. 1, pp. 117–129, 2009.
[[1]] H. Yang, B. Jiang, and M. Staroswiecki, “Supervisory fault tolerant control for a class of uncertain nonlinear systems’, Automatica, vol.45, pp. 2319–2324, 2009.
[[1]] W. Wang, and C. Y. Wen, “Adaptive compensation for infinite number