فهرست:
چکیده.................................................................................................................................................1
مقدمه............................................................................................................................................2
2-مباحث نظری و مروری بر کارهای انجامشده… 5
2-1-کیتین و کیتوسان. 5
2-1-1-ساختار کیتین و کیتوسان. 6
2-1-2-خصوصیات کیتین و کیتوسان. 8
2-1-3-خصوصیات فیزیکی و شیمیایی کیتین و کیتوسان. 8
2-1-4-کاربردهای کیتین و کیتوسان. 8
2-2-گرافن. 9
2-3-کاربرد کیتین و کیتوسان در حذف یونهای فلزات سنگین. 10
2-4-جذب یونهای فلزات سنگین با استفاده از گرافن و مشتقات آن. 20
2-5-فرآیند جذب.. 24
2-5-1-جذب سطحی.. 24
2-5-2-تعادل جذب سطحی.. 24
2-5-3-عوامل مؤثر بر سرعت جذب سطحی.. 25
2-5-3-ب- اثر pH................................................................................................................ 25
2-5-3-ت-طبیعت فاز جذب شده. 25
2-5-3-ث-کشش سطحی.. 25
2-5-4-ترمودینامیک جذب سطحی.. 25
2-5-5-سامانههای جذب سطحی 26
2-5-6-جاذب ها…... 30
2-6-روشهای تهیه و سنتز گرافن. 32
2-6-1-روشهای پایین به بالا. 32
2-6-2-روشهای تولید بالا به پایین. 33
2-6-2-ب-گرافیت اکساید. 35
2-7-عامل دار کردن شیمیایی گرافن. 41
2-7-1-عامل دار کردن کووالانسی.. 42
2-7-2-عامل دار کردن غیرکووالانسی.. 50
2-7-3-تثبیت کردن در یک محیط یونی.. 54
2-7-4-به طور مستقیم از گرافیت.. 56
2-8-نانو کامپوزیتهای گرافن/پلیمر و روش تولید آنها 58
2-8-1-پلیمریزاسیون درجای تعاملی.. 59
2-8-2-تعامل حلالی.. 59
2-8-3-روش تعاملی مذاب.. 60
3-کارهای عملی...........................................................................................................................61
3-1مواد.. 61
3-1-1-کیتوسان.. 61
3-1-2-گرافن......................................................................................................................62
3-1-3-تری اتیلن تترامین. 62
3-1-4-پلی اتیلن گلایکول. 62
3-1-5-فرمالدهید 62
3-1-6-اتیل استات.. 62
3-1-7-اسید سولفوریک 62
3-1-8-اسید نیتریک... 63
3-1-9-سود سوزآور 63
3-1-10-نمک کادمیوم نیترات.. 63
3-1-11-تیونیل کلراید. 63
3-1-12-سدیم.....................................................................................................................63
3-1-13-تتراهیدروفوران. 63
3-1-14-دی متیل فرمامید. 64
3-1-15-بنزوفنون 64
3-2-تجهیزات.... 64
3-2-1-رفلاکس... 64
3-2-2-فیلتریزاسیون خلا.. 64
3-2-3-همزن لرزان. 64
3-2-4-دستگاه pH متر. 65
3-3-نمونهسازی. 65
3-3-1-اکسید گرافن. 65
3-3-2-آسیلاسیون نانو گرافن. 66
3-3-3-عامل دار کردن نانوگرافن. 66
3-3-4-دانه کیتوسان. 67
3-3-5-نانوکامپوزیت دانه کیتوسان. 67
3-3-6-خشک کردن دانه ها 68
3-3-7-روش ساخت محلول یونی کادمیوم. 68
3-3-8-روش خشک کردن دی متیل فرمامید. 68
3-3-9-روش خشک کردن تتراهیدروفوران 69
3-4-تعیین مشخصات.. 71
3-4-1-دستگاه طیفسنجی زیر قرمز تبدیل فوریه. 71
3-4-2-تجزیه وزن سنجی گرمایی (TGA) 71
3-4-3-ریزبین الکترونی روبشی (SEM) 72
3-4-4- سیستم آنالیز عنصری EDX.. 74
3-4-5-دستگاه طیف سنجی جذب اتمی شعله (FAAS) 74
4-نتیجهگیری و بحث.....................................................................................................................76
4-1-تعیین مشخصات گرافن عامل دار شده. 76
4-1-1-طیفسنجی زیر قرمز تبدیل فوریه. 76
4-1-2-تجزیه وزن سنجی گرمایی.. 78
4-1-3-ریختشناسی نانو ذرات با استفاده از ریزبین الکترونی روبشی.....................................79
4-1-4-بررسی تخلخل نانوکامپوزیت ها 82
4-2-بررسی اثر تورم و جذب آب نانو کامپوزیتهای کیتوسان. 85
4-3-جذب یون کادمیوم از محلولهای آبی توسط نانوکامپوزیت هیدروژل های کیتوسان گرافن عامل دار شده..............................................................................................................................................86
4-3-1-به دست آوردن میزان جاذب بهینه جهت جذب یون کادمیوم. 86
4-3-2-به دست آوردن میزان pH بهینه در جذب یون کادمیوم. 88
4-3-3-به دست آوردن زمان تماس بهینه جهت جذب یون کادمیوم. 90
4-3-4-به دست آوردن میزان غلظت یون کادمیوم جهت جذب بهینه یون کادمیوم. 91
5-نتیجهگیری و پیشنهادها..............................................................................................................93
مراجع...........................................................................................................................................95
منبع:
Tollefson J., Gilbert N., “Earth summit: Rio report card.,” Nature, 7401, 20–3, Jun. 2012.
[2] Khor E., “Chitin: Fulfilling a Biomaterials Promise.”2001.
[3] Ravi Kumar M. N. ., “A review of chitin and chitosan applications,” React. Funct. Polym., 1, 1–27, Nov. 2000.
[4] Geim A. K., Novoselov K. S., “The rise of graphene.,” Nat. Mater., 3, 183–91, Mar. 2007.
[5] Singh V., Joung D., Zhai L., Das S., Khondaker S. I., Seal S., “Graphene based materials: Past, present and future,” Prog. Mater. Sci., 8, 1178–1271, Oct. 2011.
[6] Crini G., “Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment,” Prog. Polym. Sci., 1, 38–70, Jan. 2005.
[7] Benguella B., “Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies,” Water Res., 10, 2463–2474, May 2002.
[8] Benguella B., Benaissa H., “Effects of competing cations on cadmium biosorption by chitin,” 143–150, 2002.
[9] Environ J., “sorption experiments , whereas a particle size of 328 | xm was used for column studies . Determination of pH zpc A procedure outlined by Huang and Ostovic ( 1978 ) was used to determine the pH of the zero point of charge ( pH zpc ) of chitosan . To each o,” 4, 962–974, 1989.
[10] Sillanpää M. E., Rämö J. H., “Decomposition of beta-alaninediacetic acid and diethylenetriamine-pentaacetic acid by hydrogen peroxide in alkaline conditions.,” Environ. Sci. Technol., 7, 1379–84, Apr. 2001.
[11] McKay G, Blair HS F. A., “Equilibrium studies for the sorption of metal ions onto chitosan,” indian J. Chem., 356–360, 1989.
[12] Svetlana Verbycha, Mykhaylo Bryka G. C. & B. F., “Removal of copper (II) from aqueous solutions by chitosan adsorption,” Sep. Sci. Technol., 8, 1749–1759, 2005.
[13] Mcafee B. J., Gould W. D., Nadeau J. C., Costa A. C. A., “BIOSORPTION OF METAL IONS USING CHITOSAN, CHITIN, AND BIOMASS OF RHIZOPUS ORYZAE,” Sep. Sci. Technol., 14, 3207–3222, Nov. 2001.
[14] BASSI R., PRASHER S. O., SIMPSON B. K., “Removal of Selected Metal Ions from Aqueous Solutions Using Chitosan Flakes,” Sep. Sci. Technol., 4, 547–560, Jan. 2000.
[15] Jeon C., Höll W. H., “Chemical modification of chitosan and equilibrium study for mercury ion removal.,” Water Res., 19, 4770–80, Nov. 2003.
[16] Department G. L. R. and T.-Y. H. J. D. W., “Synthesis of Porous-Magnetic Chitosan Beads for Removal of Cadmium Ions from Waste Water,” indian Eng. Chem. Res., 9, 2170–2178, 1993.
[17] Liu X., Hu Q., Fang Z., Zhang X., Zhang B., “Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.,” Langmuir, 1, 3–8, Jan. 2009.
[18] Septhum C., Rattanaphani S., Bremner J. B., Rattanaphani V., “An adsorption study of Al(III) ions onto chitosan.,” J. Hazard. Mater., 1–2, 185–91, Sep. 2007.
[19] Schmuhl R., Krieg H. M., Keizer K., “Adsorption of Cu ( II ) and Cr ( VI ) ions by chitosan : Kinetics and equilibrium studies,” Water SA, 1, 1–7, 2001.
[20] Chen Y., Chen L., Bai H., Li L., “Graphene oxide–chitosan composite hydrogels as broad-spectrum adsorbents for water purification,” J. Mater. Chem. A, 6, 1992, 2013.
[21] Chandra V., Park J., Chun Y., Lee J. W., Hwang I., Kim K. S., “Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal.,” ACS Nano, 7, 3979–86, Jul. 2010.
[22] Chandra V., Kim K. S., “Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite.,” Chem. Commun. (Camb)., 13, 3942–4, Apr. 2011.
[23] Zhang N., Qiu H., Si Y., Wang W., Gao J., “Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions,” Carbon N. Y., 3, 827–837, Mar. 2011.
[24] Li L., Fan L., Sun M., Qiu H., Li X., Duan H., Luo C., “Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan.,” Colloids Surf. B. Biointerfaces, 76–83, Jul. 2013.
[25] Vasudevan S., Lakshmi J., “The adsorption of phosphate by graphene from aqueous solution,” RSC Adv., 12, 5234, 2012.
[26] Knaebel K. S., “ADSORBENT SELECTION.”
[27] Wang Y., Chen X., Zhong Y., Zhu F., Loh K. P., “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Appl. Phys. Lett., 6, 063302, 2009.
[28] Wang X., You H., Liu F., Li M., Wan L., Li S., Li Q., Xu Y., Tian R., Yu Z., Xiang D., Cheng J., “Large-Scale Synthesis of Few-Layered Graphene using CVD,” Chem. Vap. Depos., 1–3, 53–56, Mar. 2009.
[29] Seung B., Chae J., Gu F., Kim K. K., Kim E. S., Han H., Kim S. M., Shin H., Yoon S., Choi J., Park M. H., Yang C. W., Pribat D., Lee Y. H., “Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition : Wrinkle Formation,” 2328–2333, 2009.
[30] Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S., “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science, 5932, 1312–4, Jun. 2009.
[31] Di B. C., Wei D., Yu G., Liu Y., Guo Y., Zhu D., “Patterned Graphene as Source / Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors **,” 3289–3293, 2008.
[32] Dervishi E., Li Z., Watanabe F., Biswas A., Xu Y., Biris A. R., Biris A. S., “Large-scale graphene production by RF-cCVD method w,” 4061–4063, 2009.
[33] Li N., Wang Z., Zhao K., Shi Z., Gu Z., Xu S., “Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method,” Carbon N. Y., 1, 255–259, Jan. 2010.
[34] Seyller T., Bostwick A., Emtsev K. V., Horn K., Ley L., McChesney J. L., Ohta T., Riley J. D., Rotenberg E., Speck F., “Epitaxial graphene: a new material,” Phys. status solidi, 7, 1436–1446, Jul. 2008.
[35] Sprinkle M., Soukiassian P., de Heer W. A., Berger C., Conrad E. H., “Epitaxial graphene: the material for graphene electronics,” Phys. status solidi - Rapid Res. Lett., 6, A91–A94, Sep. 2009.
[36] Rollings E., Gweon G.-H., Zhou S. Y., Mun B. S., McChesney J. L., Hussain B. S., Fedorov A. V., First P. N., de Heer W. A., Lanzara A., “Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate,” J. Phys. Chem. Solids, 9–10, 2172–2177, Sep. 2006.
[37] Heer W. A. De, Berger C., Wu X., First P. N., Conrad E. H., Li X., Li T., Sprinkle M., Hass J., Sadowski M. L., Potemski M., “Epitaxial graphene,” 92–100, 2007.
[38] Mattausch A., Pankratov O., “Density functional study of graphene overlayers on SiC,” Phys. status solidi, 7, 1425–1435, Jul. 2008.
[39] Yang X., Dou X., Rouhanipour A., Zhi L., Räder H. J., Müllen K., “Two-dimensional graphene nanoribbons.,” J. Am. Chem. Soc., 13, 4216–7, Apr. 2008.
[40] Carissan Y., Klopper W., “Growing graphene sheets from reactions with methyl radicals: a quantum chemical study.,” Chemphyschem, 8, 1770–8, Aug. 2006.
[41] Zhi L., Müllen K., “A bottom-up approach from molecular nanographenes to unconventional carbon materials,” J. Mater. Chem., 13, 1472, 2008.
[42] Kim C., Min B., Jung W., “Preparation of graphene sheets by the reduction of carbon monoxide,” Carbon N. Y., 6, 1610–1612, May 2009.
[43] Jiao L., Zhang L., Wang X., Diankov G., Dai H., “Narrow graphene nanoribbons from carbon nanotubes.,” Nature, 7240, 877–80, Apr. 2009.
[44] Kosynkin D. V, Higginbotham A. L., Sinitskii A., Lomeda J. R., Dimiev A., Price B. K., Tour J. M., “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.,” Nature, 7240, 872–6, Apr. 2009.
[45] Hirsch A., “Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.,” Angew. Chem. Int. Ed. Engl., 36, 6594–6, Jan. 2009.
[46] Zhang W., Cui J., Tao C., Wu Y., Li Z., Ma L., Wen Y., Li G., “A Strategy for Producing Pure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach,” Angew. Chemie, 32, 5978–5982, Jul. 2009.
[47] Kim H., Abdala A. a., Macosko C. W., “Graphene/Polymer Nanocomposites,” Macromolecules, 16, 6515–6530, Aug. 2010.
[48] Worsley K. A., Ramesh P., Mandal S. K., Niyogi S., Itkis M. E., Haddon R. C., “Soluble graphene derived from graphite fluoride,” Chem. Phys. Lett., 1–3, 51–56, Sep. 2007.
[49] Chen G., Wu D., Weng W., Wu C., “E xfoliation of graphite flake and its nanocomposites,” Carbon N. Y., 579–625, 2003.
[50] Carr K. E., “AND OXIDATION EFFECTS ON GRAPHITE OF A MIXTURE OF SULPHURIC,” 1969.
[51] Lee J. H., Shin D. W., Makotchenko V. G., Nazarov A. S., Fedorov V. E., Kim Y. H., Choi J., Kim J. M., Yoo J., “One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets,” Adv. Mater., 43, 4383–4387, Nov. 2009.
[52] Kalaitzidou K., Fukushima H., Drzal L. T., “A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold,” Compos. Sci. Technol., 10, 2045–2051, Aug. 2007.
[53] Kalaitzidou K., Fukushima H., Askeland P., Drzal L. T., “The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites,” J. Mater. Sci., 8, 2895–2907, Oct. 2007.
[54] Novoselov K. S., Geim A. K., Morozov S. V, Jiang D., Zhang Y., Dubonos S. V, Grigorieva I. V, Firsov A. A., “Electric field effect in atomically thin carbon films.,” Science, 5696, 666–9, Oct. 2004.
[55] Bourlinos A. B., Georgakilas V., Zboril R., Steriotis T. A., Stubos A. K., “Liquid-phase exfoliation of graphite towards solubilized graphenes.,” Small, 16, 1841–5, Aug. 2009.
[56] Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z., De S., McGovern I. T., Holland B., Byrne M., Gun’Ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N., “High-yield production of graphene by liquid-phase exfoliation of graphite.,” Nat. Nanotechnol., 9, 563–8, Sep. 2008.
[57] Liu N., Luo F., Wu H., Liu Y., Zhang C., Chen J., “One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite,” Adv. Funct. Mater., 10, 1518–1525, May 2008.
[58] Behabtu N., Lomeda J. R., Green M. J., Higginbotham A. L., Sinitskii A., Kosynkin D. V, Tsentalovich D., Parra-Vasquez A. N. G., Schmidt J., Kesselman E., Cohen Y., Talmon Y., Tour J. M., Pasquali M., “Spontaneous high-concentration dispersions and liquid crystals of graphene.,” Nat. Nanotechnol., 6, 406–11, Jun. 2010.
[59] Brodie B. C., “On the Atomic Weight of Graphite,” Philos. Trans. R. Soc. London, January, 249–259, Jan. 1859.
[60] Staudenmaier L., “graphie oxie preparation,” Ber. Dtsch. Chem. Ges, 1481–1487, 1898.
[61] Hummers W. S., Offeman R. E., “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., 6, 1339–1339, Mar. 1958.
[62] Park S., Ruoff R. S., “Chemical methods for the production of graphenes.,” Nat. Nanotechnol., 4, 217–24, Apr. 2009.
[63] Boukhvalov D. W., Katsnelson M. I., “Modeling of graphite oxide.,” J. Am. Chem. Soc., 32, 10697–701, Aug. 2008.
[64] Gao W., Alemany L. B., Ci L., Ajayan P. M., “New insights into the structure and reduction of graphite oxide.,” Nat. Chem., 5, 403–8, Aug. 2009.
[65] Jeong H., Lee Y. P., Lahaye R. J. W. E., Park M.-H., An K. H., Kim I. J., Yang C., Park C. Y., Ruoff R. S., Lee Y. H., “Evidence of graphitic AB stacking order of graphite oxides.,” J. Am. Chem. Soc., 4, 1362–6, Jan. 2008.
[66] Cai W., Piner R. D., Stadermann F. J., Park S., Shaibat M. A., Ishii Y., Yang D., Velamakanni A., An S. J., Stoller M., An J., Chen D., Ruoff R. S., “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.,” Science, 5897, 1815–7, Sep. 2008.
[67] Wang S., Sun H., Ang H. M., Tadé M. O., “Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials,” Chem. Eng. J., 336–347, Jun. 2013.
[68] Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N. Y., 7, 1558–1565, Jun. 2007.
[69] Wang G., Shen X., Wang B., Yao J., Park J., “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets,” Carbon N. Y., 5, 1359–1364, Apr. 2009.
[70] Lomeda J. R., Doyle C. D., Kosynkin D. V, Hwang W., Tour J. M., “Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets.,” J. Am. Chem. Soc., 48, 16201–6, Dec. 2008.
[71] Si Y., Samulski E. T., “Synthesis of water soluble graphene.,” Nano Lett., 6, 1679–82, Jun. 2008.
[72] Wang G., Yang J., Park J., Gou X., Wang B., Liu H., Yao J., “Facile Synthesis and Characterization of Graphene Nanosheets,” J. Phys. Chem. C, 22, 8192–8195, Jun. 2008.
[73] Williams G., Seger B., Kamat P. V, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.,” ACS Nano, 7, 1487–91, Jul. 2008.
[74] Zhou Y., Bao Q., Tang L. A. L., Zhong Y., Loh K. P., “Hydrothermal Dehydration for the ‘Green’ Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties,” Chem. Mater., 13, 2950–2956, Jul. 2009.
[75] Fan Z., Wang K., Wei T., Yan J., Song L., Shao B., “An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder,” Carbon N. Y., 5, 1686–1689, Apr. 2010.
[76] McAllister M. J., Li J., Adamson D. H., Schniepp H. C., Abdala A. A., Liu J., Herrera-Alonso M., Milius D. L., Car R., Prud’homme R. K., Aksay I. A., “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chem. Mater., 18, 4396–4404, Sep. 2007.
[77] Schniepp H. C., Li J., McAllister M. J., Sai H., Herrera-Alonso M., Adamson D. H., Prud’homme R. K., Car R., Saville D. A., Aksay I. A., “Functionalized single graphene sheets derived from splitting graphite oxide.,” J. Phys. Chem. B, 17, 8535–9, May 2006.
[78] Du X., Skachko I., Barker A., Andrei E. Y., “Approaching ballistic transport in suspended graphene.,” Nat. Nanotechnol., 8, 491–5, Aug. 2008.
[79] Park M. J., Lee J. K., Lee B. S., Lee Y.-W., Choi I. S., Lee S., “Covalent Modification of Multiwalled Carbon Nanotubes with Imidazolium-Based Ionic Liquids: Effect of Anions on Solubility,” Chem. Mater., 6, 1546–1551, Mar. 2006.
[80] Fang M., Wang K., Lu H., Yang Y., Nutt S., “Single-layer graphene nanosheets with controlled grafting of polymer chains,” J. Mater. Chem., 10, 1982, 2010.
[81] Bourlinos A. B., Gournis D., Petridis D., Szabó T., Szeri A., Dékány I., “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, 15, 6050–6055, Jul. 2003.
[82] Lotya M., Hernandez Y., King P. J., Smith R. J., Nicolosi V., Karlsson L. S., Blighe F. M., De S., Wang Z., McGovern I. T., Duesberg G. S., Coleman J. N., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions.,” J. Am. Chem. Soc., 10, 3611–20, Mar. 2009.
[83] Hamilton C. E., Lomeda J. R., Sun Z., Tour J. M., Barron A. R., “High-yield organic dispersions of unfunctionalized graphene.,” Nano Lett., 10, 3460–2, Oct. 2009.
[84] Kuila T., Bose S., Mishra A. K., Khanra P., Kim N. H., Lee J. H., “Chemical functionalization of graphene and its applications,” Prog. Mater. Sci., 7, 1061–1105, Sep. 2012.
[85] Kuila T., Bose S., Hong C. E., Uddin M. E., Khanra P., Kim N. H., Lee J. H., “Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method,” Carbon N. Y., 3, 1033–1037, Mar. 2011.
[86] Shan C., Yang H., Han D., Zhang Q., Ivaska A., Niu L., “Water-Soluble Graphene Covalently Functionalized by Biocompatible,” 26, 15343–15346, 2009.
[87] Bekyarova E., Itkis M. E., Ramesh P., Berger C., Sprinkle M., de Heer W. A., Haddon R. C., “Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups.,” J. Am. Chem. Soc., 4, 1336–7, Feb. 2009.
[88] Stankovich S., Piner R. D., Nguyen S. T., Ruoff R. S., “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets,” Carbon N. Y., 15, 3342–3347, Dec. 2006.
[89] Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., “Graphene-based composite materials.,” Nature, 7100, 282–6, Jul. 2006.
[90] Zhang D., Zu S., Han B., “Inorganic–organic hybrid porous materials based on graphite oxide sheets,” Carbon N. Y., 13, 2993–3000, Nov. 2009.
[91] Hu H., Wang X., Wang J., Liu F., Zhang M., Xu C., “Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics,” Appl. Surf. Sci., 7, 2637–2642, Jan. 2011.
[92] Choi J., Kim K., Kim B., Lee H., Kim S., “Covalent Functionalization of Epitaxial Graphene by Azidotrimethylsilane,” J. Phys. Chem. C, 22, 9433–9435, Jun. 2009.
[93] Georgakilas V., Bourlinos A. B., Zboril R., Steriotis T. a, Dallas P., Stubos A. K., Trapalis C., “Organic functionalisation of graphenes.,” Chem. Commun. (Camb)., 10, 1766–8, Mar. 2010.
[94] Zhao Y.-L., Stoddart J. F., “Noncovalent functionalization of single-walled carbon nanotubes.,” Acc. Chem. Res., 8, 1161–71, Aug. 2009.
[95] Nakayama-Ratchford N., Bangsaruntip S., Sun X., Welsher K., Dai H., “Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence.,” J. Am. Chem. Soc., 9, 2448–9, Mar. 2007.
[96] Stankovich S., Piner R. D., Chen X., Wu N., Nguyen S. T., Ruoff R. S., “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J. Mater. Chem., 2, 155, 2006.
[97] Bai H., Xu Y., Zhao L., Li C., Shi G., “Non-covalent functionalization of graphene sheets by sulfonated polyaniline.,” Chem. Commun. (Camb)., 13, 1667–9, Apr. 2009.
[98] Xu Y., Bai H., Lu G., Li C., Shi G., “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.,” J. Am. Chem. Soc., 18, 5856–7, May 2008.
[99] Choi E., Han T. H., Hong J., Kim J. E., Lee S. H., Kim H. W., Kim S. O., “Noncovalent functionalization of graphene with end-functional polymers,” J. Mater. Chem., 10, 1907, 2010.
[100] Liu J., Yang W., Tao L., Li D., Boyer C., Davis T. P., “Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization,” J. Polym. Sci. Part A Polym. Chem., 2, 425–433, Jan. 2010.
[101] Yang H., Zhang Q., Shan C., Li F., Han D., Niu L., “Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte.,” Langmuir, 9, 6708–12, May 2010.
[102] Park S., An J., Piner R. D., Jung I., Yang D., Velamakanni A., Nguyen S. T., Ruoff R. S., “Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets,” Chem. Mater., 21, 6592–6594, Nov. 2008.
[103] Li D., Müller M. B., Gilje S., Kaner R. B., Wallace G. G., “Processable aqueous dispersions of graphene nanosheets.,” Nat. Nanotechnol., 2, 101–5, Feb. 2008.
[104] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J., Kim P., Choi J., Hong B. H., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, 7230, 706–710, 2008.
[105] Hao R., Qian W., Zhang L., Hou Y., “Aqueous dispersions of TCNQ-anion-stabilized graphene sheets.,” Chem. Commun. (Camb)., 48, 6576–8, Dec. 2008.
[106] Ansari S., Giannelis E. P., “Functionalized graphene sheet-Poly(vinylidene fluoride) conductive nanocomposites,” J. Polym. Sci. Part B Polym. Phys., 9, 888–897, May 2009.
[107] Zhang H., Zheng W., Yan Q., Yang Y., Wang J., Lu Z., Ji G., Yu Z., “Electrically conductive polyethylene terephthalate / graphene nanocomposites prepared by melt compounding,” Polymer (Guildf)., 5, 1191–1196, 2010.
[108] Kim H., Thomas Hahn H., Viculis L. M., Gilje S., Kaner R. B., “Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite,” Carbon N. Y., 7, 1578–1582, Jun. 2007.
[109] Zheng W., Lu X., Wong S., “Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene,” J. Appl. Polym. Sci., 5, 2781–2788, Mar. 2004.
[110] Ye L., Meng X., Ji X., Li Z., Tang J., “Synthesis and characterization of expandable graphite–poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams,” Polym. Degrad. Stab., 6, 971–979, Jun. 2009.
[111] Lee W. D., Im S. S., “Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization,” J. Polym. Sci. Part B Polym. Phys., 1, 28–40, Jan. 2007.
[112] Hussain F., “Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview,” J. Compos. Mater., 17, 1511–1575, Jan. 2006.
[113] Liang J., Huang Y., Zhang L., Wang Y., Ma Y., Guo T., Chen Y., “Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites,” Adv. Funct. Mater., 14, 2297–2302, Jul. 2009.
[114] Lee J., Kim S. K., Kim N. H., “Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites,” Scr. Mater., 12, 1119–1122, Dec. 2006.
[115] Kalaitzidou K., Fukushima H., Drzal L. T., “Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites,” Compos. Part A Appl. Sci. Manuf., 7, 1675–1682, Jul. 2007.
[116] Kim S., Do I., Drzal L. T., “Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites,” Polym. Compos., 5, 755–761, Jan. 2009.
[117] Weng W., Chen G., Wu D., “Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites,” Polymer (Guildf)., 16, 6250–6257, Jul. 2005.
[118] Bourlinos A. B., Gournis D., Petridis D., Szabó T., Szeri A., Dékány I., “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, 15, 6050–6055, Jul. 2003.