فهرست:
فصل اول: مقدمه و بررسی منابع. 1
1-1- سرطان ریه. 2
1-1-1- عوامل خطرساز 3
1-1-2- تغییرات ژنی عامل سرطان ریه. 4
1-2- اهمیت شناسایی سرطان ریه. 5
1-3- روشهای شناسایی سرطان ریه. 6
1-3-1- نانوسیمهای سیلیکا 7
1-3-2- نانوذرات طلا.. 10
1-3-3- نانولولههای کربنی.. 13
1-3-4- نقاط کوانتومی.. 17
1-4-گرافن. 21
1-5-گرافن اکسید. 24
1-6-کاربردهای گرافن اکسید. 27
1-6-1-کاربرد گرافن اکسید در بیوالکتروشیمی.. 28
1-6-2- کاربردهای پزشکی و زیستی گرافن اکسید. 29
1-7- هدف از کار پزوهشی حاضر. 38
فصل دوم: بخش تجربی.. 39
2-1- مواد و دستگاهها 40
2-2- تهیهی بافر Tris-HCl 42
2-3- سنتز گرافن اکسید. 42
2-4 آمادهسازی محلولها برای اندازهگیری طیف فلوئورسانس... 43
2-4-1- تهیهی محلول مرحلهی اول. 43
2-4-2- تهیهی محلول مرحلهی دوم. 43
2-4-3- تهیهی محلولهای مرحلهی سوم. 44
2-4-4- تهیهی محلول مرحلهی چهارم. 44
2-4-5- تهیهی محلولهای مرحلهی پنجم.. 44
2-4-6- تهیهی محلولهای مرحلهی ششم.. 45
فصل سوم: نتایج و بحث.. 46
3-1- تهیه گرافن اکسید از گرافیت.. 47
3-2- بررسی طیف UV-Vis گرافن اکسید. 48
3-3- تفسیر طیف IR گرافن اکسید. 49
3-4- بررسی تصویر TEM گرافن اکسید. 49
3-5- انتخاب بیومارکر سرطان ریه. 50
3-6- تفسیر طیفهای نشری. 53
3-6-1- بررسی طیف فلوئورسانس DNA پروب.. 53
3-6-2- بهینهسازی زمان جذب DNA پروب بر سطح GO.. 54
3-6-3- بهینهسازی مقدار GO در حضور DNA پروب.. 56
3-6-4- بررسی طیف فلوئورسانس کمپلکس DNA-GO پروب در حضور DNA هدف (DNA سالم) 57
3-6-5- بهینهسازی زمان هیبرید شدن DNA هدف با DNA پروب در حضور GO.. 58
3-6-6- بررسی تغییرات شدت فلوئورسانس کمپلکس DNA-GO پروب در حضور غلظتهای مختلف DNA هدف 60
3-6-7- بررسی طیف فلوئورسانس DNA-GO پروب در حضور mDNA (DNA جهشدار) 62
3-7- شناسایی سرطان ریه. 63
3-8- نتیجهگیری. 65
3-9- پیشنهادات.. 66
منابع 67
منبع:
[1] A. J. Alberg, M. V. Brock, J. M. Samet. Epidemiology of lung cancer: looking to the future. J. Clin. Oncol., 2005, 23, 3175-3185.
[2] S. Y. Luo, D. C. Lam. Oncogenic driver mutations in lung cancer. Transl. Respir. Med., 2013, 1, 6-13.
[3] F. Taher, N. Werghi, H. Al-Ahmad, C. Donner. Extraction and Segmentation of Sputum Cells for Lung Cancer Early Diagnosis. J. Algorithms, 2013, 6, 512-531.
[4] G. S. Wright, M. E. Gruidl. Early detection and prevention of lung cancer. Curr. Opin. Oncol., 2000, 12, 143-148.
[5] T. Ozlu, Y. Bubul. Smoking and lung cancer. Tüberküloz ve Toraks Dergisi, 2005, 53, 200-209.
[6] T. K. Sethi, M. N. El-Ghamry, G. H. Kloecker. Radon and lung cancer. Clin. Adv. Hematol. Oncol., 2012, 10, 157-164.
[7] R. Hubaux, D. D. Becker-Santos, K. S. Enfield, S. Lam, W. L. Lam, V. D. Martinez. Arsenic, asbestos and radon: emerging players in lung tumorigenesis. J. Environ. Health, 2012, 11, 89-100.
[8] J. D. Minna, J. A. Roth, A. F. Gazdar. Focus on lung cancer. Cancer cell, 2002, 1, 49-52.
[9] G. Ellison, G. Zhu, A. Moulis, S. Dearden, G. Speake, R. M. Cormack. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples. J. Clin. Pathol., 2013, 66, 79-89.
[10] C. E. Kim, K. M. Tchou-Wong, W. N. Rom. Sputum-Based Molecular Biomarkers for the Early Detection of Lung Cancer: Limitations and Promise. Cancers, 2011, 3, 2975-2989.
[11] F. R. Hirsch, W. A. Franklin, A. F. Gazdar, P. A. Bunn. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin. Cancer Res., 2001, 7, 5-22.
[12] D. Hayes, H. Secrist, C. Bangur, T. Wang, X. Zhang, D. Harlan, G. Goodman, R. Houghton, D. Persing, B. Zehentner. Multigene real-time PCR detection of circulating tumor cells in peripheral blood of lung cancer patients. Anticancer Res., 2006, 26, 1567-1576.
[13] A. Arroliga, R. Matthay. The role of bronchoscopy in lung cancer. Clin. Chest Med., 1993, 14, 87-98.
[14] Y. E. Choi, J.W. Kwak, J. W. Park. Nanotechnology for early cancer detection. Sensors, 2010, 10, 428-455.
[15] S. Nie, Y. Xing, G. J. Kim, J. W. Simons. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[16] Z. L. Wang, R. P. Gao, Z. W. Pan, Z. R. Dai. Nano-scale mechanics of nanotubes, nanowires, and nanobelts. Adv. Eng. Mater., 2001, 3, 657-661.
[17] P. K. Sekhar, N. S. Ramgir, R. K. Joshi, S. Bhansali. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology, 2008, 19, 5502-5508.
[18] N. S. Ramgir, A. Zajac, P. K. Sekhar, L. Lee, T. A. Zhukov, S. Bhansali. Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires. J. Phys. Chem. C, 2007, 111, 13981-13987.
[19] G. Peng, M. Hakim, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, U. Tisch, H. Haick. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Brit. J. Cancer, 2010, 103, 542-551.
[20] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. nanotechnol., 2009, 4, 669-673.
[21] http://what-when-how.com/nanoscience-and-nanotechnology/functionalization-of nanotube-surfaces-part-1-nanotechnology/
[22] L. Zhang, D. Lv, W. Su, Y. Liu, Y. Chen, R. Xiang. Detection of cancer biomarker with nanotechnology. Am. J. Biochem. Biotechnol., 2013, 9, 71-89.
[23] S. r. Ji, C. Liu, B. Zhang, F. Yang, J. Xu, J. Long, C. Jin, D. l. Fu, Q. x. Ni, X. j. Yu. Carbon nanotubes in cancer diagnosis and therapy. BBA-Rev. Cancer, 2010, 1806, 29-35.
[24] N. Sinha, J. T. Yeow. Carbon nanotubes for biomedical applications. IEEE T. NanoBiosci., 2005, 4, 180-195.
[25] R. M. Reilly. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J. Nucl. Med., 2007, 48, 1039-1042.
[26] W. Yang, P. Thordarson, J. J. Gooding, S. P. Ringer, F. Braet. Carbon nanotubes for biological and biomedical applications. Nanotechnology, 2007, 18, 412-420.
[27] F. Liu, P. Xiao, H. Fang, H. Dai, L. Qiao, Y. Zhang. Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer. Physica E, 2011, 44, 367-372.
[28] J. Drbohlavova, V. Adam, R. Kizek, J. Hubalek. Quantum dots—characterization, preparation and usage in biological systems. Int. j. mol. sci., 2009, 10, 656-673.
[29] H. Zhang, D. Yee, C. Wang. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine-UK, 2008, 3, 83-91.
[30] M. Hu, J. Yan, Y. He, H. Lu, L. Weng, S. Song, C. Fan, L. Wang. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano, 2009, 4, 488-494.
[31] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. mater., 2005, 4, 435-446.
[32] G. Jie, L. Wang, S. Zhang. Magnetic electrochemiluminescent Fe3O4/CdSe–CdS nanoparticle/polyelectrolyte nanocomposite for highly efficient immunosensing of a cancer biomarker. Chem. Eur. J., 2011, 17, 641-648.
[33] M. Pumera, A. Ambrosi, A. Bonanni, E. K. Chng, H. L. Poh. Graphene for electrochemical sensing and biosensing. TrAC-Trend Anal. Chem., 2010, 29, 954-965.
[34] W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang. Synthesis of graphene and its applications: a review. Crit. Rev. Solid State, 2010, 35, 52-71.
[35] M. I. Katsnelson. Graphene: carbon in two dimensions. Mater. today, 2007, 10, 20-27.
[36] M. Taghioskoui. Trends in graphene research. Mater. today, 2009, 12, 34-37.
[37] G. Gonçalves, M. Vila, M. T. Portolés, M. Vallet‐Regi, J. Gracio, P. A. Marques. Nano‐Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy. Adv. healthc. mater., 2013, 2, 1072-1090.
[38] S. Park, R. S. Ruoff. Chemical methods for the production of graphenes. Nat. nanotechnol., 2009, 4, 217-224.
[39] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour. Improved synthesis of graphene oxide. ACS Nano, 2010, 4, 4806-4814.
[40] C. Hontoria-Lucas, A. Lopez-Peinado, J. D. López-González, M. Rojas-Cervantes, R. Martin-Aranda. Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon, 1995, 33, 1585-1592.
[41] J. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. Tascon. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24, 10560-10564.
[42] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39, 228-240.
[43] X. Zuo, S. He, D. Li, C. Peng, Q. Huang, S. Song, C. Fan. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir, 2009, 26, 1936-1939.
[44] H. Wang, Q. Zhang, X. Chu, T. Chen, J. Ge, R. Yu. Graphene Oxide–Peptide Conjugate as an Intracellular Protease Sensor for Caspase‐3 Activation Imaging in Live Cells. Angew. Chem. Int. Ed., 2011, 50, 7065-7069.
[45] J. H. Jung, D. S. Cheon, F. Liu, K. B. Lee, T. S. Seo. A Graphene Oxide Based Immuno‐biosensor for Pathogen Detection. Angew. Chem. Int. Ed., 2010, 49, 5708-5711.
[46] Q. Zhu, D. Xiang, C. Zhang, X. Ji, Z. He. Multicolour probes for sequence-specific DNA detection based on graphene oxide. Analyst, 2013, 138, 5194-5196.
[47] C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed., 2009, 121, 4879-4881.
[48] S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, C. Fan. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater., 2010, 20, 453-459.
[49] R. Maiti, S. Manna, A. Midya, S. K. Ray. Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions. Opt. Express, 2013, 21, 26034-26043.
[50] P. Huang, Ch. Xu, J. Lin, C. Wang, X. Wang, Ch. Zhang, X. Zhou, Sh. Guo, D. Cui. Folic Acid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy. Theranostics, 2011, 1, 240-250.
[51] R. Molina, J. M. Auge, J. M. Escudero, R. Marrades, N. Viñolas, E. Carcereny, J. Ramirez, X. Filella. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as tumor markers in patients with lung cancer: comparison with CYFRA 21-1, CEA, SCC and NSE. Tumor Biol., 2008, 29, 371-380.
[52] Y. Zhang, D. Yang, L. Weng, L. Wang. Early Lung Cancer Diagnosis by Biosensors. Int. j. mol. sci., 2013, 14, 15479-15509.
[53] D. Zheng, S. Haddadin, Y. Wang, L. Q. Gu, M. C. Perry, C. E. Freter, M. X. Wang. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int. J. Clin. Exp. Patho., 2011, 4, 575.
[54] W. Pao, N. Girard. New driver mutations in non-small-cell lung cancer. Lancet Oncol., 2011, 12, 175-180.
[55] T. Kosaka, Y. Yatabe, H. Endoh, H. Kuwano, T. Takahashi, T. Mitsudomi. Mutations of the epidermal growth factor receptor gene in lung cancer biological and clinical implications. Cancer Res., 2004, 64, 8919-8923.
[56] Y. Yatabe, T. Mitsudomi. Epidermal growth factor receptor mutations in lung cancers. Pathol. Int., 2007, 57, 233-244.
[57] S. V. Sharma, D. W. Bell, J. Settleman, D. A. Haber. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer, 2007, 7, 169-181.
[58] G. Bronte, S. Rizzo, L. La Paglia, V. Adamo, S. Siragusa, C. Ficorella, D. Santini, V. Bazan, G. Colucci, N. Gebbia. Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treat. Rev., 2010, 36, 21-29.
[59] Y. Jiang, J. Tian, S. Chen, Y. Zhao, Y. Wang, S. Zhao. A Graphene Oxide–Based Sensing Platform for The Label-free Assay of DNA Sequence and Exonuclease Activity via Long Range Resonance Energy Transfer. J. Fluoresc., 2013, 23, 697-703.
[60] B. Liu, Z. Sun, X. Zhang, J. Liu. Mechanisms of DNA Sensing on Graphene Oxide. Anal. chem., 2013, 85, 7987-7993.
[61] L. Tang, Y. Wang, Y. Liu, J. Li. DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay. ACS Nano, 2011, 5, 3817-3822.
[62] F. Li, Y. Huang, Q. Yang, Z. Zhong, D. Li, L. Wang, S. Song, C. Fan. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale, 2010, 2, 1021-1026.