فهرست:
سپاسگذاری.. د
فهرست مطالب.. ه
فهرست شکلها ط
فهرست جداول. ک
فهرست نمودارها ک
علایم و اختصارات.. م...........................................................................................................................................................................
چکیده 1
فصل 1 کلیات.. 3
1.1.مقدمه. 4
1.2.تحلیل رفتار سیالات.. 5
1.3.پیش زمینه پیدایش CFD.. 6
1.4. مقایسه روش های حل معادلات مکانیک سیالات.. 6
1.5. دینامیک سیالات محاسباتی.. 7
1.5.1. مراحل کاری CFD به طور کلی.. 8
1.5.2. مراحل کاری یک برنامه CFD در یک نگاه 9
1.5.3. یک برنامه CFD چگونه کار می کند؟. 10
1.5.4. نرم افزارهای CFD.. 16
1.6. جریان های فازی.. 16
1.6.1. رژیم های چندفازی.. 17
1.6.2. مثال هایی از سیستم های چندفازی.. 19
1.6.3. انتخاب یک مدل چند فازی.. 20
1.6.4. مقایسه مدل ها 22
فصل 2 مقدمه. 25
2.1.دورنما 25
2.2.انگیزه و هدف.. 28
2.3.حیطه و طرح کلی پایان نامه. 29
فصل 3 مروری بر تحقیقات.. 32
3.1. الگوهای جریان دو فازی گاز - مایع و نقشه رژیم در لوله های افقی و عمودی.. 32
3.1.1. الگوهای جریان و نقشه رژیم در جریان لوله عمودی.. 32
3.1.2. الگوی جریانی و نقشه رژیم در جریان لوله افقی.. 35
3.2. مشخصات جریان حبابی همدما در ستون حباب.. 39
3.3. مدلسازی موازنه جمعیتی برای جریان حبابی همدما 41
3.4. مکانیزم های برخورد حباب.. 47
فصل 4 فرمولاسیون عددی و مدل موازنه جمعیتی.. 50
4.1. مدل موازنه جمعیتی.. 50
4.1.1. معادله موازنه جمعیتی.. 50
4.1.2. مکانیزم های برخورد حباب.. 51
4.1.3. روشهای مدل موازنه جمعیتی.. 58
4.2. انتقال مومنتوم بین فازی.. 62
4.2.1. نیروی دراگ.. 63
4.2.2. نیروی برآ 63
4.2.3. نیروی لیزاننده دیواره 64
4.2.4. نیروی جرم مجازی.. 65
4.2.5. نیروی پراکندگی آشفته. 65
4.3. مدلسازی آشفته برای مدل دو سیالی.. 66
4.4. مدل دو سیالی و جمله بسته. 69
فصل 5 بررسی عددی تاثیر نیروهای بین سطحی روی جریان حبابی.. 71
5.1. مقدمه. 71
5.2. مدل ریاضی.. 74
5.2.1. انتقال مومنتوم بین سطحی به دلیل کشش... 74
5.2.2. مدل عدد چگالی متوسط حباب(ABND) 77
5.2.3. هسته های شکست و پیوستگی.. 77
5.3. جزئیات عددی و تجربی.. 79
5.4. نتایج و بحث.. 81
5.4.1. توزیع کسر خالی.. 81
5.4.2. قطر متوسط حباب.. 83
5.4.3. سرعت گاز متوسط زمانی.. 86
5.5. نتیجه گیری.. 88
فصل 6 مدلسازی جریان حبابی گاز - مایع افقی با استفاده از روش موازنه جمعیتی.. 91
6.1.مقدمه. 91
6.2.جزئیات عددی.. 93
6.3.نتایج و بحث.. 96
6.3.1.کسر خالی متوسط زمانی گاز 96
6.3.2.غلظت ناحیه بین سطحی متوسط زمانی(IAC) 98
6.3.3.سرعت متوسط زمانی گاز 99
6.4.نتیجه گیری.. 99
فصل 7 مدلسازی جریان حبابی عمودی گاز - مایع با استفاده از روش ربع مستقیم گشتاورها(DQMOM)) 102
7.1. مقدمه و فرمولاسیون ریاضی.. 102
7.2. مدلهای ریاضی.. 105
7.2.1. مدلهای DQMOM.. 105
7.2.2. جملات چشمه ای مدلهای DQMOM.. 107
7.3. توصیف تنظیمات آزمایش... 108
7.3.1. توصیف تنظیمات آزمایش های MTLOOP و TOPFLOW... 109
7.3.2. رشد اندازه مختلف حباب ایجاد شده با روشهای تزریق مختلف.. 110
7.4. جزئیات عددی.. 111
7.5. بحث.. 112
7.5.1. توزیع کسر خالی حباب.. 113
7.5.2. توزیع اندازه حباب.. 116
7.6. نتیجه گیری.. 118
فصل 8 نتیجه گیری.. 120
8.1. بررسی عددی تاثیر نیروی بین سطحی روی جریان حبابی.. 120
8.2. مدلسازی جریان افقی گاز - مایع با استفاده از ABND براساس روش موازنه جمعیتی.. 121
8.3. مدلسازی جریان حبابی گاز - مایع عمودی با استفاده از روش ربع مستقیم گشتاورها(DQMOM)) 122
8.4. توصیه های توسعه CFD و تحقیقات آینده در جریان دو فازی 122
منبع:
ANSYS. CFX-14 User Manual. ANSYS-CFX, 2012
Bannari R., Kerdouss F., Selma B., Bannari A., Proulx P. (2008). “Three dimensional
mathematical modelling of dispersed two phase flow using class method of
population balance in bubble columns”. Computational Chemical Engineering, 32,
3224.
Behzadi A., Issa R. I., Rusche H. (2004). “Modelling of dispersed bubble and droplet
flow at high phase fractions”, Chemical Engineering Science, 59, 759.
Bertola F., Baldi G., Marchisio D., Vanni M. (2004). “Momentum transfer in a swarm
of bubbles: estimates from fluid-dynamic simulations”, Chemical Engineering
Science, 59, 5209.
Bhole M. R., Joshi J. B., Ramkrishna D. (2008). “CFD simulation of bubble columns
incorporating population balance modelling”. Chemical Engineering Science, 63,
2267.
Boyera, C., Duquenneb, A., Wild, G., (2002) “Measuring techniques in gas–liquid and
gas–liquid–solid reactors”, Chemical Engineering Science, 57, 3185.
Burns, A. D., Frank, T., Hamill, I. and Shi, J., (2004), “The Favre Averaged Drag
Model for Turbulent Dispersion in Eulerian Multiphase Flow”, Proceedings of the
Fifth International Multiphase Flow, Yokohama, Japan.
Chesters, A.K., (1991), “The Modeling of Coalescence Processes in Fluid-Liquid Dispersion: A Review of Current Understanding”, Trans. I. Chem. Eng., 69, 259.
Chen p., Sanyal J., Dudukovic M. P. (2005). “Numerical simulation of bubble columns
flows: effect of different breakup and coalescence closures”. ChemicalEngineering Science, 60, 1085.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2007 a), “On the modelling of population balance
in isothermal vertical bubbly flows – average bubble number density approach”.
Chemical Engineering Process, 46, 742.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2007 b), “On the numerical study of isothermal
vertical bubbly flow using two population balance approaches”. Chemical
Engineering Science, 62, 4659.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2008), “Population balance modelling of bubbly
flows considering the hydrodynamics and thermomechanical processes”, AIChE
Journal, 54(7), 1689.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2009 a), “A review of population balance
modelling for isothermal bubbly flows”, Journal of Computational Multiphase
Flows, 1(2), 161.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2009 b), “Direct Quadrature Method of Moments
for Isothermal Bubbly Flows”, The 7th International Conference on Reference 121
Computational Fluid Dynamics in the Minerals and Process Industries, December
2009, Melbourne, Australia.
Dorao C.A., Jakobsen H.A., (2006), “Numerical calculation of the moments of the
population balance equation”. Journal of computational and applied mathematics,
196, 619.
Dorao C.A., Lucas D., Jakobsen H.A., (2008), “Prediction of the evolution of the
dispersed phase in bubbly flow problems”. Applied mathematical modelling, 32,
1813.
Duan X.Y., Cheung S.C.P., Yeoh G.H., Tu J.Y., Krepper E. and Lucas D., (2011),
“Gas-liquid flows in medium and large vertical pipes”, Chemical Engineering
Scinece, 66, 872. Reference 122
Ekambara, K., Sanders, R. S., Nandakumar, K., Masliyah, J. H., (2008), “CFD
simulation of bubbly two-phase flow in horizontal pipes”. Chemical Engineering
Journal, 144, 277.
Haoues, L., Olekhnovitch, A., Teyssedou, A., (2009), “Numerical study of the influence
of the internal structure of a horizontal bubbly flow on the average void fraction”.
Nuclear Engineering Design, 239, 147.
Hibiki T., Ishii M. (2000), “One-group interfacial area transport of bubbly flows in
vertical round tubes”, International Journal of Heat and Mass Transfer, 43, 2711.
Reference 123
Hibiki T., Ishii M., Xiao Z., (2001), “Axial interfacial area transport of vertical bubble
flows”, International Journal of Heat and Mass Transfer, 44, 1869.
Hibiki T., Ishii M., (2002), “Development of one-group interfacial area transport
equation in bubbly flow systems”, International Journal of Heat and Mass
Transfer, 45, 2351.
Hibiki T., Ishii M. (2007), “Lift force in bubbly flow systems”. Chemical Engineering
Science, 62, 6457.
Ishii M. (1975). “Thermo-Fluid Dynamic Theory of Two-Phase Flow”, Chapter IX and
X, Eyrolles, Paris, or Scientific and Medical Publication of France, N.Y.
Ishii, M., Zuber, N., (1979), "Drag coefficient and relative velocity in bubby, droplet or
particulate flows”. AIChE J., 25, 843
Ishii, M., Kin, S. and Uhle, J., (2002), “Interfacial Area Transport: Model Development
and Benchmark Experiments”, International Journal of Heat and Mass Transfer, 45, 3111.
Kim S., Park J. H., Kojaosy G., Kelly, J. M., Marshall, S. O., (2007), “Geometric effects
of 90-degree Elbow in the development of interfacial structures in horizontal
bubbly flow”. Nuclear Engineering Design, 237, 2105.
Kim S., Callender, K., Kojasoy, G., (2009), “Interfacial area transport in horizontal
bubbly flow with 90-degree elbow”, Nuclear Technology, 167, 20.
Kocamustafaogullari G., Wang Z., (1991), "An experimental study on local interfacial
parameters in a horizontal bubbly 2-phase flow. International Journal of
Multiphase Flow, 17, 553.
Kocamustafaogullari G., Huang W. D., (1994 a), "Internal structure and interfacial
velocity development for bubbly 2-phase flow. Nuclear Engineering and Design,
151, 79.
Kocamustafaogullari G., Huang W. D., Razi J., (1994 b), "Measurement and modeling
of average void fraction, bubble size and interfacial area”. Nuclear Engineering
and Design, 148, 437.
Kocamustafaogullari G., Ishii M., (1995) “Foundation of the interfacial area transport
equation and its closure relations”. International Journal of Heat and Mass
Transfer, 38, 481.
Li C., Yeoh G.H., Cheung Sherman C. P. and Tu Jiyuan, (2010 a) “Modelling
Horizontal Gas-Liquid Flow using Averaged Bubble Number Density Approach”,
Journal of Computational Multiphase Flows, 2(2), 89.
Li C., Cheung Sherman C. P., Yeoh G.H., and Tu Jiyuan, (2010 b) “On Modelling
Horizontal Gas-liquid Bubbly Flow using Population Balance Approach” The 17th
Australasian Fluid Mechanics Conference, December, Auckland, New Zealand.
Li C., Cheung Sherman C. P., Yeoh G.H., and Tu Jiyuan, (2009 a) “A study of drag
force in isothermal bubbly flow” Journal of Computational Multiphase Flows,
1(4), 295.
Li C., Cheung Sherman C. P., Yeoh G.H., and Tu Jiyuan, (2009 b) “Influence of drag
forces of a swarm of bubbles in isothermal bubbly flow conditions” The 7th International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 2009, Melbourne, Australia.
Li C., Cheung Sherman C. P., Tu Jiyuan, and Yeoh G.H., (2008) “3-D Numerical
simulation of isothermal upward bubbly flow: A study of drag force in multibubble
system based on ABND model” 2008 ANSYS Australia User Conference,
November 2008, Sydney, Australia
Liao Y. X., Lucas D., (2009), “A literature review on theoretical models for drop and
bubble breakup in turbulent dispersions”, Chemical Engineering Science, 64, 3389.
Liao Y. X., Lucas D., (2010), “A literature review on mechanisms and models for the
coalescence process of fluid particles”. Chemical Engineering Science, 65, 2851.
Reference 126
Liu Y., Hibiki T., Ishii M., Kelly J. M. (2008). “Drag coefficient in one-dimensional
two-group two-fluid model”. International Journal of Heat Fluid Flow, 29, 1402.
Lucas D., Krepper E., Prasser H.M., (2005), “Development of co-current air-water flow
in a vertical pipe”. International Journal of Multiphase flow, 31, 1304.
Mabrouk R., Chaouki J., Guy C. (2007). “Effective drag coefficient investigation in the
acceleration zone of an upward gas-solid flow”. Chemical Engineering Science, 62,
317.
Magnaudet J., Eames I. (2000). “The motion of high-Reynolds-Number Bubbles in
Inhomogeneous flows”. Annu. Rev. Fluid Mech., 32, 659.
Reference 127
Marchisio D.L., Vigil D.R., Fox R.O., (2003a), “Quadrature method of moments for
aggregation-breakage processes”. Journal of Colloid Interface Science, 258, 322-
324.
Marchisio D.L., Pikturna J.T., Fox R.O., Vigil R.D., (2003b), “Quadrature method for
moments for population-balance equations”. AIChE Journal, 49, 1266.
Marchisio D.L., Vigil D.R., Fox R.O., (2003c), “Implementation of the quadrature
method of moments in CFD codes for aggregation-breakage problems”. Chemical
Engineering Science, 58, 3337.
Marchisio D.L., Fox R.O., (2005), “Solution of population balance equations using the
direct quadrature method of moments”. Journal of Aerosol Science, 36, 43.
McCoy B.J., Madras G., (2003), “Analytic solution for a population balance equation
with aggregation and fragmentation”. Chemical Engineering Science, 58, 3049.
McGraw R., Wright D.L., (2003), “Chemically resolved aerosol dynamics for internal
mixtures by the quadrature method of moments” Journal of Aerosal Science, 34, 189.
Mishima K., Ishii M., (1984) “Flow regime transition criteria for upward two-phase
flow in vertical tubes”, International Journal of Heat and Mass Transfer, 27, 723.
Canadian Journal of Chemical Engineering, 64, 718. Reference 128
Moraga, F.J., Larreteguy, A.E., Drew, D.A., Lahey, R. T. Jr., (2003), “Assessment of
Turbulent Dispersion Models for Bubbly Flows in the Low Stokes Number Limit”,
International Journal of Multiphase Flow, 29, 655.
Pochorecki R., Moniuk W., Bielski P., Zdrojkwoski A., (2001), ‘Modelling of the
coalescence/redisperison processes in bubble columns”. Chemical Engineering
Science, 56, 6157.
Politano M. S., Carrica P.M., Converti J. (2003). “A model for turbulent polysidperse
two phase flow in vertical channels”. Int. J. of Multiphase Flow, 29, 1153
Prasser, H.M., Beyer, M., Carl, H., Gregor, S., Lucas, D., Pietruske, H., Schutz, P.,
Weiss, F.P., (2007), “Evolution of the structure of a gas-liquid two-phase flow in
a large vertical pipe”. Nuclear Engineering and Design, 237, 1848.
Ramkrishna D., (2000), “Population balances: Theory and applications to particulate
systems in engineering”. New York: Academic press.
Ramkrishna D., Mahoney A.W. “Population balances modelling, (2002), Promise for
the future”. Chemical Engineering Science, 57, 595.
Sanders, R. S., Razzaque, M. M., Schaan, J., Nandakumar, K., Masliyah, J. H., Afacan,
A., Shijie, L., (2004), “Bubble size distributions for dispersed air - Water flows in
a 100 mm horizontal pipeline”. Canadian Journal of Chemical Engineering, 82, 858.
Simonnet M., Gentric C., Olmos E., Midoux N. (2007), “Experimental determination of
the drag coefficient in a swarm of bubbles”, Chemical Engineering Science, 62, 858.
Simonnet M., Gentric C., Olmos E., Midoux N. (2008), “CFD simulation of the flow
field in a bubble column reactor: Importance of thedrag force formulation to
describe regime transitions”, Chemical Engineering and Processing, 47, 1726.
Tabib M.V., Roy S. A., Joshi J. B. (2008). “CFD simulation of bubble column-An
analysis of interphase forces and turbulence models”. Chemical Engineering
Journal, 139, 589.
Talley, J. D., Kim, S., (2010), “Horizontal bubbly flow with elbow restrictions:
Interfacial area transport modeling”, Nuclear Engineering Design, 240, 1111.
Taylor G.I. (1934), “The formation of emulsions in definable fields of flow”, Proc. R.
Soc. Lond. A 146, 500.
Taylor TD, Acrivos A., (1964), “On the deformation and drag of a falling viscous drop
at low Reynolds number”, Journal of Fluid Mechanism. 18, 466.
Tian Z.F. (2007), “Numerical modelling of turbulent gas-particle flow and its
applications”, PhD thesis.
Tomiyama A., (1998), “Struggle with computational bubble dynamics”, in: Proceeding
of the Third International Conference on Multiphase Flow. Lyon, France.
Tomiyama, A. (2004). “Drag, lift and virtual mass forces acting on a single bubble”. 3rd
International Symposium on Two-phase Flow Modelling and Experimentation, Pisa, 22.
Tselishcheva, E. A., Antal, S. P., Podowski, M., (2010), "Mechanistic multidimensional
analysis of horizontal two-phase flows. Nuclear Engineering Design, 240, 405-415.
Wallwork V., (2003), “An Investigation of Oil Sand Processability”, M.Sc. Thesis,
University of Alberta, Edmonton.
Wang T., et al (2005 a), “Theoretical prediction of flow regime transition in bubble
columns by the population balance model”, Chemical Engineering Science, 60, 6199.
Wang T., et al (2005 b), “Population balance model for gas-liquid flows: influence of
bubble coalescence and breakup models”, Industrial Engineering Chemical
Research, 44, 7540.
Yang H., Zhao T.S., Cheng P., (2004), “Gas–liquid two-phase flow patterns in a
miniature square channel with a gas permeable sidewall”, International Journal of
Heat and Mass Transfer, 47, 5725.
Yeoh, G. H., Tu, J. Y., (2005), “A unified model considering force balances for
departing vapour bubbles and population balance in subcooled boiling flow”,
Nuclear Engineering and Design, 235, 1251.
Yeoh, G. H., Tu, J. Y., (2006), “Numerical modelling of bubbly flows with and without
heat and mass transfer”, Application of Mathematical Model, 30, 1067.
Zhang L., Yang C., Mao Z. X. (2008), “Unsteady motion of a single bubble in highly
viscous liquid and empirical correlation of drag coefficient”. Chemical Engineering Science, 63, 2099.
Zuber N., F.W. Staub, G. Bijwaard, and P.G. Kroeger, (1967), “Steady state and
transient void fraction in two-phase flow system”. General Electric Co. Report GEAP-5417, 1
فهرست منابع فارسی
شبیه سازی CFD جریان های چند فازی با نرم افزار فلوئنت، دکتر سید حسن هاشم آبادی – دکتر محمد علی دهنوی، تهران – اندیشه سرا 1390
فلوئنت کاربردی، محمد گلشاهی فر، تهران – صانعی شهمیرزادی 1387
شبیه سازی پدیده های فیزیکی و شیمیایی با فلوئنت برای مهندسان شیمی و مکانیک، دکتر محمد ایرانی – دکتر علی نخعی پور - شهره تهرانی، تهران – اندیشه سرا 1390
مقدمه ای بر دینامیک سیالات محاسباتی ، ورستیک و مالالاسکرا ، مترجم : دکتر محمد حسن شجاعی فرد –دکتر علیرضا نورپور هشترودی ،تهران – دانشگاه علم وصنعت ایران 1391
آموزش نرم افزار CFX ،مسعود نیکخو – مجتبی مهرجوئی ، تهران – موسسه علمی و فرهنگی نص 1388
اصول طراحی هیدرولیکی خطوط لوله انتقال جریان های دو فازی ، علی وطنی – سعید مخاطب ،تهران – جهاد دانشگاهی تهران 1384
ANSYS. CFX-14 User Manual. ANSYS-CFX, 2012
Bannari R., Kerdouss F., Selma B., Bannari A., Proulx P. (2008). “Three dimensional
mathematical modelling of dispersed two phase flow using class method of
population balance in bubble columns”. Computational Chemical Engineering, 32,
3224.
Behzadi A., Issa R. I., Rusche H. (2004). “Modelling of dispersed bubble and droplet
flow at high phase fractions”, Chemical Engineering Science, 59, 759.
Bertola F., Baldi G., Marchisio D., Vanni M. (2004). “Momentum transfer in a swarm
of bubbles: estimates from fluid-dynamic simulations”, Chemical Engineering
Science, 59, 5209.
Bhole M. R., Joshi J. B., Ramkrishna D. (2008). “CFD simulation of bubble columns
incorporating population balance modelling”. Chemical Engineering Science, 63,
2267.
Boyera, C., Duquenneb, A., Wild, G., (2002) “Measuring techniques in gas–liquid and
gas–liquid–solid reactors”, Chemical Engineering Science, 57, 3185.
Burns, A. D., Frank, T., Hamill, I. and Shi, J., (2004), “The Favre Averaged Drag
Model for Turbulent Dispersion in Eulerian Multiphase Flow”, Proceedings of the
Fifth International Multiphase Flow, Yokohama, Japan.
Chesters, A.K., (1991), “The Modeling of Coalescence Processes in Fluid-Liquid Dispersion: A Review of Current Understanding”, Trans. I. Chem. Eng., 69, 259.
Chen p., Sanyal J., Dudukovic M. P. (2005). “Numerical simulation of bubble columns
flows: effect of different breakup and coalescence closures”. ChemicalEngineering Science, 60, 1085.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2007 a), “On the modelling of population balance
in isothermal vertical bubbly flows – average bubble number density approach”.
Chemical Engineering Process, 46, 742.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2007 b), “On the numerical study of isothermal
vertical bubbly flow using two population balance approaches”. Chemical
Engineering Science, 62, 4659.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2008), “Population balance modelling of bubbly
flows considering the hydrodynamics and thermomechanical processes”, AIChE
Journal, 54(7), 1689.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2009 a), “A review of population balance
modelling for isothermal bubbly flows”, Journal of Computational Multiphase
Flows, 1(2), 161.
Cheung S.C.P., Yeoh G.H., Tu J.Y. (2009 b), “Direct Quadrature Method of Moments
for Isothermal Bubbly Flows”, The 7th International Conference on Reference 121
Computational Fluid Dynamics in the Minerals and Process Industries, December
2009, Melbourne, Australia.
Dorao C.A., Jakobsen H.A., (2006), “Numerical calculation of the moments of the
population balance equation”. Journal of computational and applied mathematics,
196, 619.
Dorao C.A., Lucas D., Jakobsen H.A., (2008), “Prediction of the evolution of the
dispersed phase in bubbly flow problems”. Applied mathematical modelling, 32,
1813.
Duan X.Y., Cheung S.C.P., Yeoh G.H., Tu J.Y., Krepper E. and Lucas D., (2011),
“Gas-liquid flows in medium and large vertical pipes”, Chemical Engineering
Scinece, 66, 872. Reference 122
Ekambara, K., Sanders, R. S., Nandakumar, K., Masliyah, J. H., (2008), “CFD
simulation of bubbly two-phase flow in horizontal pipes”. Chemical Engineering
Journal, 144, 277.
Haoues, L., Olekhnovitch, A., Teyssedou, A., (2009), “Numerical study of the influence
of the internal structure of a horizontal bubbly flow on the average void fraction”.
Nuclear Engineering Design, 239, 147.
Hibiki T., Ishii M. (2000), “One-group interfacial area transport of bubbly flows in
vertical round tubes”, International Journal of Heat and Mass Transfer, 43, 2711.
Reference 123
Hibiki T., Ishii M., Xiao Z., (2001), “Axial interfacial area transport of vertical bubble
flows”, International Journal of Heat and Mass Transfer, 44, 1869.
Hibiki T., Ishii M., (2002), “Development of one-group interfacial area transport
equation in bubbly flow systems”, International Journal of Heat and Mass
Transfer, 45, 2351.
Hibiki T., Ishii M. (2007), “Lift force in bubbly flow systems”. Chemical Engineering
Science, 62, 6457.
Ishii M. (1975). “Thermo-Fluid Dynamic Theory of Two-Phase Flow”, Chapter IX and
X, Eyrolles, Paris, or Scientific and Medical Publication of France, N.Y.
Ishii, M., Zuber, N., (1979), "Drag coefficient and relative velocity in bubby, droplet or
particulate flows”. AIChE J., 25, 843
Ishii, M., Kin, S. and Uhle, J., (2002), “Interfacial Area Transport: Model Development
and Benchmark Experiments”, International Journal of Heat and Mass Transfer, 45, 3111.
Kim S., Park J. H., Kojaosy G., Kelly, J. M., Marshall, S. O., (2007), “Geometric effects
of 90-degree Elbow in the development of interfacial structures in horizontal
bubbly flow”. Nuclear Engineering Design, 237, 2105.
Kim S., Callender, K., Kojasoy, G., (2009), “Interfacial area transport in horizontal
bubbly flow with 90-degree elbow”, Nuclear Technology, 167, 20.
Kocamustafaogullari G., Wang Z., (1991), "An experimental study on local interfacial
parameters in a horizontal bubbly 2-phase flow. International Journal of
Multiphase Flow, 17, 553.
Kocamustafaogullari G., Huang W. D., (1994 a), "Internal structure and interfacial
velocity development for bubbly 2-phase flow. Nuclear Engineering and Design,
151, 79.
Kocamustafaogullari G., Huang W. D., Razi J., (1994 b), "Measurement and modeling
of average void fraction, bubble size and interfacial area”. Nuclear Engineering
and Design, 148, 437.
Kocamustafaogullari G., Ishii M., (1995) “Foundation of the interfacial area transport
equation and its closure relations”. International Journal of Heat and Mass
Transfer, 38, 481.
Li C., Yeoh G.H., Cheung Sherman C. P. and Tu Jiyuan, (2010 a) “Modelling
Horizontal Gas-Liquid Flow using Averaged Bubble Number Density Approach”,
Journal of Computational Multiphase Flows, 2(2), 89.
Li C., Cheung Sherman C. P., Yeoh G.H., and Tu Jiyuan, (2010 b) “On Modelling
Horizontal Gas-liquid Bubbly Flow using Population Balance Approach” The 17th
Australasian Fluid Mechanics Conference, December, Auckland, New Zealand.
Li C., Cheung Sherman C. P., Yeoh G.H., and Tu Jiyuan, (2009 a) “A study of drag
force in isothermal bubbly flow” Journal of Computational Multiphase Flows,
1(4), 295.
Li C., Cheung Sherman C. P., Yeoh G.H., and Tu Jiyuan, (2009 b) “Influence of drag
forces of a swarm of bubbles in isothermal bubbly flow conditions” The 7th International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 2009, Melbourne, Australia.
Li C., Cheung Sherman C. P., Tu Jiyuan, and Yeoh G.H., (2008) “3-D Numerical
simulation of isothermal upward bubbly flow: A study of drag force in multibubble
system based on ABND model” 2008 ANSYS Australia User Conference,
November 2008, Sydney, Australia
Liao Y. X., Lucas D., (2009), “A literature review on theoretical models for drop and
bubble breakup in turbulent dispersions”, Chemical Engineering Science, 64, 3389.
Liao Y. X., Lucas D., (2010), “A literature review on mechanisms and models for the
coalescence process of fluid particles”. Chemical Engineering Science, 65, 2851.
Reference 126
Liu Y., Hibiki T., Ishii M., Kelly J. M. (2008). “Drag coefficient in one-dimensional
two-group two-fluid model”. International Journal of Heat Fluid Flow, 29, 1402.
Lucas D., Krepper E., Prasser H.M., (2005), “Development of co-current air-water flow
in a vertical pipe”. International Journal of Multiphase flow, 31, 1304.
Mabrouk R., Chaouki J., Guy C. (2007). “Effective drag coefficient investigation in the
acceleration zone of an upward gas-solid flow”. Chemical Engineering Science, 62,
317.
Magnaudet J., Eames I. (2000). “The motion of high-Reynolds-Number Bubbles in
Inhomogeneous flows”. Annu. Rev. Fluid Mech., 32, 659.
Reference 127
Marchisio D.L., Vigil D.R., Fox R.O., (2003a), “Quadrature method of moments for
aggregation-breakage processes”. Journal of Colloid Interface Science, 258, 322-
324.
Marchisio D.L., Pikturna J.T., Fox R.O., Vigil R.D., (2003b), “Quadrature method for
moments for population-balance equations”. AIChE Journal, 49, 1266.
Marchisio D.L., Vigil D.R., Fox R.O., (2003c), “Implementation of the quadrature
method of moments in CFD codes for aggregation-breakage problems”. Chemical
Engineering Science, 58, 3337.
Marchisio D.L., Fox R.O., (2005), “Solution of population balance equations using the
direct quadrature method of moments”. Journal of Aerosol Science, 36, 43.
McCoy B.J., Madras G., (2003), “Analytic solution for a population balance equation
with aggregation and fragmentation”. Chemical Engineering Science, 58, 3049.
McGraw R., Wright D.L., (2003), “Chemically resolved aerosol dynamics for internal
mixtures by the quadrature method of moments” Journal of Aerosal Science, 34, 189.
Mishima K., Ishii M., (1984) “Flow regime transition criteria for upward two-phase
flow in vertical tubes”, International Journal of Heat and Mass Transfer, 27, 723.
Canadian Journal of Chemical Engineering, 64, 718. Reference 128
Moraga, F.J., Larreteguy, A.E., Drew, D.A., Lahey, R. T. Jr., (2003), “Assessment of
Turbulent Dispersion Models for Bubbly Flows in the Low Stokes Number Limit”,
International Journal of Multiphase Flow, 29, 655.
Pochorecki R., Moniuk W., Bielski P., Zdrojkwoski A., (2001), ‘Modelling of the
coalescence/redisperison processes in bubble columns”. Chemical Engineering
Science, 56, 6157.
Politano M. S., Carrica P.M., Converti J. (2003). “A model for turbulent polysidperse
two phase flow in vertical channels”. Int. J. of Multiphase Flow, 29, 1153
Prasser, H.M., Beyer, M., Carl, H., Gregor, S., Lucas, D., Pietruske, H., Schutz, P.,
Weiss, F.P., (2007), “Evolution of the structure of a gas-liquid two-phase flow in
a large vertical pipe”. Nuclear Engineering and Design, 237, 1848.
Ramkrishna D., (2000), “Population balances: Theory and applications to particulate
systems in engineering”. New York: Academic press.
Ramkrishna D., Mahoney A.W. “Population balances modelling, (2002), Promise for
the future”. Chemical Engineering Science, 57, 595.
Sanders, R. S., Razzaque, M. M., Schaan, J., Nandakumar, K., Masliyah, J. H., Afacan,
A., Shijie, L., (2004), “Bubble size distributions for dispersed air - Water flows in
a 100 mm horizontal pipeline”. Canadian Journal of Chemical Engineering, 82, 858.
Simonnet M., Gentric C., Olmos E., Midoux N. (2007), “Experimental determination of
the drag coefficient in a swarm of bubbles”, Chemical Engineering Science, 62, 858.
Simonnet M., Gentric C., Olmos E., Midoux N. (2008), “CFD simulation of the flow
field in a bubble column reactor: Importance of thedrag force formulation to
describe regime transitions”, Chemical Engineering and Processing, 47, 1726.
Tabib M.V., Roy S. A., Joshi J. B. (2008). “CFD simulation of bubble column-An
analysis of interphase forces and turbulence models”. Chemical Engineering
Journal, 139, 589.
Talley, J. D., Kim, S., (2010), “Horizontal bubbly flow with elbow restrictions:
Interfacial area transport modeling”, Nuclear Engineering Design, 240, 1111.
Taylor G.I. (1934), “The formation of emulsions in definable fields of flow”, Proc. R.
Soc. Lond. A 146, 500.
Taylor TD, Acrivos A., (1964), “On the deformation and drag of a falling viscous drop
at low Reynolds number”, Journal of Fluid Mechanism. 18, 466.
Tian Z.F. (2007), “Numerical modelling of turbulent gas-particle flow and its
applications”, PhD thesis.
Tomiyama A., (1998), “Struggle with computational bubble dynamics”, in: Proceeding
of the Third International Conference on Multiphase Flow. Lyon, France.
Tomiyama, A. (2004). “Drag, lift and virtual mass forces acting on a single bubble”. 3rd
International Symposium on Two-phase Flow Modelling and Experimentation, Pisa, 22.
Tselishcheva, E. A., Antal, S. P., Podowski, M., (2010), "Mechanistic multidimensional
analysis of horizontal two-phase flows. Nuclear Engineering Design, 240, 405-415.
Wallwork V., (2003), “An Investigation of Oil Sand Processability”, M.Sc. Thesis,
University of Alberta, Edmonton.
Wang T., et al (2005 a), “Theoretical prediction of flow regime transition in bubble
columns by the population balance model”, Chemical Engineering Science, 60, 6199.
Wang T., et al (2005 b), “Population balance model for gas-liquid flows: influence of
bubble coalescence and breakup models”, Industrial Engineering Chemical
Research, 44, 7540.
Yang H., Zhao T.S., Cheng P., (2004), “Gas–liquid two-phase flow patterns in a
miniature square channel with a gas permeable sidewall”, International Journal of
Heat and Mass Transfer, 47, 5725.
Yeoh, G. H., Tu, J. Y., (2005), “A unified model considering force balances for
departing vapour bubbles and population balance in subcooled boiling flow”,
Nuclear Engineering and Design, 235, 1251.
Yeoh, G. H., Tu, J. Y., (2006), “Numerical modelling of bubbly flows with and without
heat and mass transfer”, Application of Mathematical Model, 30, 1067.
Zhang L., Yang C., Mao Z. X. (2008), “Unsteady motion of a single bubble in highly
viscous liquid and empirical correlation of drag coefficient”. Chemical Engineering Science, 63, 2099.
Zuber N., F.W. Staub, G. Bijwaard, and P.G. Kroeger, (1967), “Steady state and
transient void fraction in two-phase flow system”. General Electric Co. Report GEAP-5417,