فهرست:
مقدمه 2
1-1 - مزایا و معایب خنک کردن با هوا 2
1-1-1- مزایا 2
1-1-2- معایب 3
2-1- ساختار مبادله کن های گرمای خنک شونده با هوا 3
1-3- آرایش دسته لوله ها و ایجاد جریان هوا 4
1-3-1- عبور هوا به صورت جریان دمشی (اجباری) و مکشی (القایی) 4
1-4- عبور هوا به صورت جریان طبیعی 8
1-5- ساختار دسته لوله و شکل بندی های جریان 9
1-5-1- ساختار دسته لوله 9
1-5-2- شکل بندی جریان 11
1-5-3- ساختار لوله پره دار 12
1-5-4- لوله های پره دار 16
1-6- انواع پره ها 16
1-7- کاربردهای فن های هوایی 19
1-7-1- استفاده های صنعتی 19
1-8- معادلات اساسی انتقال گرما 20
1-9- اجزای فن هوایی 22
1-10- فن های هوایی عمودی 23
1-11- تیوب باندل ها واجزای مختلف کویل ها 26
1-12- فن و محرک هوا 29
1-13- مشکلات مبدل های خنک کننده هوایی 31
2-1- مروری بر کارهای گذشته 34
3-1- معرفی واحد هیدروژن 38
3-2- شیمی فرآیند 38
3-3- شرح عملیات واحد 40
3-4- شبیه سازی با استفاده از نرم افزار Aspen B-jac 44
3-5- مراحل شبیه سازی با نرم افزار 56
3-6- شبیه سازی با استفاده الگوریتم شبکه های عصبی 59
3-7- مفهوم شبکه 59
3-8- شبکه عصبی مصنوعی 60
3-9- مدل ریاضی شبکه عصبی مصنوعی 61
3-9-1- پرسپترون چند لایه 63
3-10- آموزش شبکه به روش پس انتشار خطا 65
3-11- الگوریتم پس انتشار خطا 66
3-12- روند شبیه سازی مسائل 71
3-13- شبیه سازی 73
4-1- نتایج نرم افزار Aspen B-jac 85
4-2- نتایج الگوریتم شبکه عصبی 92
منابع و مراجع 96
Abstract 102
منبع:
[1]- Paikert, P .(1983) Air cooled heat exchangers, in Heat Exchangers Design Handbook, Hemisphere Publishing, New York, Chap 3.8.
جامعه اطلاعاتی صنایع پتروشیمی -[2]
[3]- Chu, C.C (1985) Studies of the plumes above air cooled heat exchangers operating under natural convection, Ph. D. Universityof Birmingham.
[4]- Sadic Kakac- Hongtan Liu، فصل 11، ترجمه دکتر سپهر صنایع، مبادله کن های کرما
[5]- Engineering Science Data Unit (ESDU) (1986) High-fin staggered tube banks: Heat transfer and pressure drop for turbulent single phase gas flow, ESDU International Ltd., London.
[6]- www.amercool.com, Basic of Air cooled Heat Exchanger
[7] کیز و.م.، لندن ا.ل.، ترجه مرکز آموزش و تحقیق شرکت رادیاتور ایران.، ١۳۷١. طراحی مبدلهای حرارتی- فشرده . شرکت سهامی خاص رادیاتور ایران.
C.J. Meyer* , D.G. Kroger: Air-Cooled Heat Exchanger Inlet Flow Losses. Thermal Engineering (2001).
[9]- G.J. Kosten, K.I. Morgan, J.M. Burns, P.L. Curlett, Operating and Performance Testing of the World’s Largest Air-cooled Condenser, American Power Conference, Chicago, 1981.
- H.B. Goldschagg, Lessons Learned from the World’s Largest Forced Draft Direct Air-cooled Condenser, EPRI meeting, Washington, 1993.
[11]- M.A. Mohandes, T.V. Jones, C.M.B. Russell, Pressure loss mechanisms in resistances inclined to an air flow with application to fin tubes, First National Heat Transfer Conference, Leeds, 1984.
[12]- F.K. Moore and J.R. Ristorcelli, Turbulent flow and pressure losses behind oblique high-drag heat exchangers. Int. J. Heat Mass Transfer 22 (1979), pp. 1175–1186.
[13]- F.K. Moore, Flow Fields and Pressure Losses of V-bundles with Finite Resistance, ASME Paper 79-WA/HT-4, 1979.
[14]- J.C.B. Kotze, M.O. Bellstedt, D.G. Kroger, Pressure drop and heat transfer characteristics of inclined finned tube heat exchanger bundles, Proc. Eighth Int. Heat transfer Conf., San Francisco, 1986.
[15]- D.J. Van Aarde and D.G. Kroger, Flow losses through an array of A-frame heat exchangers. Heat Transfer Engng. 14 1 (1993), pp. 43–51.
[16]- K. Duvenhage, D. G. Kroger*: The influence of wind on the performance of forced draught air-cooled heat exchangers. University of Stellenbosch(1996).
[17]- D.G. Kroger, Fan performance in air-cooled steam condensers. Heat Rec. System CHP 14 (1994) 391-399.
[18]- C.G. Du Toit and D.G. Kroger, Modelling of the recirculation in mechanical draught heat exchangers. South African Inst. of Mech. Engrs. R & DJ 9 (1993), pp. 2–8.
[19]- K. Duvenhage and D.G. Kroger, Plume recirculation in mechanical-draft air-cooled heat exchangers. Heat Transfer Eng. 16 4 (1995), pp. 42–49.
[20]- A.Y. Gunter and K.V. Shipes, Hot air recirculation by air coolers. Chem. Eng. Prog. 68 (1972), pp. 49–58.
[21]- J.F. Kennedy and H. Fordyce, Plume recirculation and interference in mechanical draft cooling towers. In: Proc. Cooling Tower Environment Symp., University of Maryland, Baltimore (1974), pp. 58–87.
[22]-Y. Onishi and D.S. Trent, Mathematical and experimental investigations on dispersion and recirculation of plumes from dry cooling towers at Wyodak Power Plant in Wyoming. In: BNWL-1982, Battelle Pacific Northwest Laboratories, Richland, Washington (1976).
[23]- P.R. Slawson and H.F. Sullivan, Model studies on the design and arrangement of forced draught cooling towers to minimize recirculation and interference. In: Proc. Waste Heat Management and Utilization Conf. (1981), pp. 235–244.
[24]- J.G. Ribier, Evaluation of recirculation in induced Draft Cooling Towers. In: 6th IAHR Cooling Tower Workshop (1988).
[25]- J.T. Turner, The aerodynamics of forced draught air-cooled heat exchangers, Int. Symp. On Cooling Systems, BHRA Fluid Engineering, Cranfield, England (1975) pp. 81-99.
[26]- K. Duvenhage, J.A. Vermeulen, C.J. Meyer and D.G. Kroger, Flow distortions at the fan inlet of forced draught air-cooled heat exchangers, Appl. Thermal Eng. 16 (1996) 741-752.
[27]- S.R. Shabanian , M. Shahhosseini , A.A. Alsairafi , CFD and experimental studies on heat transfer enhancement in an air cooler equipped with different tube inserts, International Communications in Heat and Mass Transfer 38 (2011) 383-390.
[28]- P. Parthasarathy, P. Talukdar, V.R. Kishore, Enhancement of heat transfer with
porous/solid insert for laminar flow of a participating gas in a 3-D square duct,
Numerical Heat Transfer; Part A: Applications 56 (9) (2009) 764–784.
[29]-S. Kiwan, M.S. Alzahrany, Effect of using porous inserts on natural convection heat transfer between two concentric vertical cylinders, Numerical Heat Transfer;
A: Applications 53 (8) (2008) 870–889.
[30]- N. Yucel, R.T. Guven, Forced-convection cooling enhancement of heated elements in a parallel-plate channels using porous inserts, Numerical Hea Applications 51 (3) (2007) 293–312.
[31]- X. Tong, J.A. Khan, M.R. Amin, Enhancement of heat transfer by inserting a metal matrix into a phase change material, Numerical Heat Transfer; Part A:
Applications 30 (2) (1996) 125–141.
[32]- R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for
twisted-tape inserts in isothermal tubes: part II-transition and turbulent flows,
Enhanced Heat Transfer, Transaction ASME, Journal Heat Transfer 202 (1992)
99–106.
[33]- S.K. Agarwal, M. Raja Rao, Heat transfer augmentation for the flow of a viscous
liquid in circular tubes using twisted tape inserts, International Journal of Heat
and Mass Transfer 39 (17) (1996) 3547–3557.
[34]- C. Yildiz, Y. Bicer, D. Pehlivan, Effect of twisted strips on heat transfer and pressure drop in heat exchangers, Energy Conversion and Management 39 (3–4) (1998) 331–336.
[35]- S.K. Saha, A. Dutta, S.K. Dhal, Friction and heat transfer characteristics of laminar swirl flow through a circular tubes fitted with regularly spaced twisted-tape
elements, International Journal of Heat and Mass Transfer 44 (22) (2001) 4211–4223.
[36]- P.K. Sarma, T. Subramanyam, P.S. Kishore, R.V. Dharma, S. Kakac, Laminar
convective heat transfer with twisted tape inserts in a tube, International Journal
of Thermal Sciences 42 (9) (2003) 821–828.
S. J. Venter and D. G. Kroger, An evaluation of methods to predict the system effect present in air-cooled heat exchangers, Heat Recovery Systems & CHP Vol. 11, No. 5, pp. (431-440), 1991.
[38]- British Standard Institution, Fans for general purposes, Part 1, Methods of testing performance, BS 848 (1980).
[39]- Nowakowski J. K., Pressure losses in the inlet and outlet channels of high-pressure single and two-stage axial-flow fans, Proc. Sixth Conf. Fluid Machinery, Hungary, pp. 760-769 (1979).
[40]- Graham J. B., Fan selection and application considerations, Symp. Proc. Power Plant Fans-State of the ART, Indianapolis, USA., 14-16 Oct. 1981.
[41]- Cory, W. T. W., Fan performance testing the effects of the system, Int. Conf. Fan Design and Applications, Guildford, England, Sponsored by BHRA Fluid Engineering, 7-9 September 1982.
[42]- O,Connor, J. F., The system effect and how it changes fan performance, ASHRAE Trans. 89 (1983).
[43]- Bolton A. N., Gray A. J. and Margetts E. J., Installation effects in fan systems, Proc. Inst. Mech. Eng. Eur. Conf., London, England, 14-15 March 1990.
[44]- Woods Ballard W. R., Fans in air handling units, Installation effects in fan systems, Proc. Inst. Mech. Eng. Eur. Conf., London, England, 14-15 March 1990.
[45]- Riera-Ubiergo J. A. and Charbonnelle F., Installation effects in fan systems, Installation effect in fan systems, Proc. Inst. Mech. Eng. Eur. Conf., London, England, 14-15 March (1990).
[46]- Beard R. A., Truck radiator technology, Part II, Product application technology, Heat Transfer Division, Covrad Ltd, Coventry, England (1980).
[47]- Hay N. and Taylor S. R. G., The effects of vehicle cooling system geometry on fan performance, Conference on fan technology and practice, Organised by the Institution of Mechanical Engineers, pp. 176-192, London, 18-19 April( 1972).
[48]- Daly B. B., Interaction between fan and the system, Installation effects in ducted fan systems, Institution of Mechanical Engineers, Conference publications, No. C110184, pp. 1-7 (1984).
[49]- Deeprose W. M. and Smith T. W., The usefulness of BS 848 Part 1:1980 in establishing the installed performance of a fan. Institution of Mechanical Engineers, Conference publications, No. Cl15/84, pp. 9-20 (1984).
[50]- Roslyng O., Installation effect on axial flow fan caused by swirl and non-uniform velocity distribution, Installation effects in ducted fan systems, Institution of Mechanical Engineers, Conference publications, No. C114/84, pp. 21-28(1984).
[51]- Zaleski T. H., System effect factors for axial flow fans, Installation effects in fan systems, Proc. Inst. Mech. Eng. Eur.Conf., London, England, 14-15 March 1990
Predicting system effect in air-cooled heat exchangers 439
[52]- Coward C. W., A summary of pressure loss values for various fan inlet and outlet duct fittings, ASHRAE Trans. 89,(1983).
[53]- Lambert P. C., Cowan G. H. and Bott T. R., Flow characteristics in a box-shaped plenum chamber associated with an air-cooled heat exchanger, United Kingdom Atomic Energy Authority, Research Group, Harwell, Berkshire, U.K.(1972).
[54]- Stone R. D. and Wen S. H., Airflow characteristics of built-up fan plenums and performance of airflow correction devices, ASHRAE Semi-annual Meeting, Chicago IL, 28 January-I February 1973.
[55]- Russell C. M. B. and Berryman R. J., The calculation of pressure losses in air-cooled heat exchanger air inlets and plenum chambers, American Society of Mechanical Engineers, Heat transfer division, HTD vol. 96, pp. 429-434.
ASME, New York, U.S.A. (1978).
[56]- نرم افزار Aspen B-jac
[57]- Lei Wang, Cheng Shao, Hai Wang, Hong Wu, Radial Basis Function Neural Networks Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery GasesJournal of Natural Gas Chemistry Volume 15, Issue 3, September 2006, Pages 230-234 .
[58]- Li Weimin, Li Wenkai, Chi-Wai Hui, Integrating neural network models for refinery planning, Computer Aided Chemical Engineering Volume 15, 2003, Pages 1304-1309
[59]- Taoufiq Gueddar, Vivek Dua , Novel model reduction techniques for refinery-wide energy optimisation, Applied Energy Volume 89, Issue 1, January 2012, Pages 117-126.
[60]- Mahdi Koolivand Salooki, , Reza Abedini, , Hooman Adib, , Hadis Koolivand, Design of neural network for manipulating gas refinery sweetening regenerator column outputs, Separation and Purification Technology Volume 82, 27 October 2011, Pages 1-9
[61]- Kai Wu , Xiaorong He, Chen Bingzhen, On-line training method of ANN in DMS for side draw quality of refinery fractionator, Computers & Chemical Engineering Volume 24, Issues 2-7, 15 July 2000, Pages 1585-1589
[62]- امید صیادی، آشنایی مقدماتی با شبکه های عصبی مصنوعی، دانشگاه صنعتی شریف