فهرست:
فصل اول: مقدمه
پیشگفتار. خ
1- 1 افزایش جمعیت و نیاز به انرژی.. 1
1- 2 سوخت های فسیلی و چالش های کنونی.. 2
1-3 انرژی های تجدید پذیر. 3
1- 4 تولید الکتریسیته بیولوژیکی با استفاده از فناوری های پیل سوختی میکروبی.. 3
1-5 تاریخچه پیل های سوختی میکروبی.. 4
1-6 کاربرد های پیل سوختی.. 7
1-6-1 تولید انرژی تجدید پذیر با استفاده از پیل سوختی میکروبی.. 7
1-6-2 استفاده از پیل سوختی میکروبی جهت تصفیه فاضلاب.. 8
1-6-3 فرایند پیل سوختی میکروبی برای تولید هیدروژن.. 9
1-6-4 بیوسنسور. 9
1-7 انتقال الکترون به الکترود ها 9
1-7-1 مکانیزم انتقال الکترون.. 9
1-8 انواع پیل های سوختی میکروبی.. 12
1-9 پیل های سوختی میکروبی.. 13
1-9-1 مواد تشکیل دهنده الکترود آند. 14
1-9-1-1 کربن ورقه ای، پارچه ای، فوم ها 15
1-9-1-2 میله ها، نمد ها، فوم ها، صفحات و تخته های گرافیتی.. 15
1-9-1-3 دانه های گرافیتی.. 17
1-9-1-4 رشته ها و برس های گرافیتی 17
1-9-2 مواد تشکیل دهنده الکترود کاتد. 18
1-9-2-1 کاتد های کربنی با کاتالیست های پلاتینی.. 19
1-9-2-2 بایندر. 19
1-9-2-3 لایه های نفوذ. 20
1-9-2-4 پلاتین و فلزاتی با پوشش های پلاتینی.. 20
1-9-3 غشاء ها و جدا کننده ها 20
1-10 محاسبه ولتاژ. 21
1-11 بیشینه ولتاژ براساس روابط ترمودینامیکی.. 22
1-11 محاسبه توان.. 23
1-12-1 نرمالیزه کردن توان خروجی پیل سوختی میکروبی تک محفظهای.. 23
1-12-1-1 توان خروجی نرمالایز شده به مساحت سطح آند. 24
1-12-1-1 توان خروجی نرمالایز شده به مساحت سطح کاتد. 24
1-12-1-2 توان خروجی نرمالایز شده با حجم خالی بستر پیل.. 24
1-13 منحنی های پلاریزاسیون و چگالی توان.. 25
1-14 عوامل تاثیر گذار بر روی ولتاژ پیل سوختی میکروبی.. 27
1-15 نکاتی مهم و کوتاه در مورد باکتریها و شرایط متابولیسم آنها 29
فصل دوم : مروری بر پژوهش های پیشین
پیشگفتار. 32
2-1 پیکربندی.. 33
2-2 سیستم های پیل سوختی تک محفظهای.. 33
2-3 مروری بر الکترود های به کار گرفته شده در پیل سوختی میکروبی.. 36
2-4 مروری بر پژوهش های صورت گرفته در زمینه پساب های استفاده شده. 39
2-4-1 استات.. 40
2-4-2 گلوکز. 40
2-4-3 توده زیستی لیگنوسلولزی.. 41
2-4-4 پساب کارخانجات آبجو سازی.. 41
2-4-5 پساب خروجی از کارخانجات تولید نشاسته. 42
2-4-6 شیرابه زباله. 42
2-4-7 پساب ساختگی.. 43
فصل سوم : سامانه مورد آزمایش، مواد، روشها و نحوه محاسبات
پیشگفتار. 45
3-1 طراحی، ساخت و راه اندازی پیل سوختی بیولوژیکی.. 46
3-1-1 بدنه پیل سوختی میکروبی تک محفظهای.. 46
3-1-2 الکترود کاتد. 49
3-1-3 الکترود آند. 53
3-2 دستگاه های مورد استفاده. 55
3-2-1 سیستم ثبت ولتاژ در طول زمان.. 55
3-2-2 دستگاه اسپکتروفتومتر. 55
3-2-3 دستگاه اندازه گیری pH.. 56
3-2-4 دستگاه آون.. 56
3-2-5 دستگاه سانتریفیوژ. 56
3-2-6 دستگاه انکوباتور. 57
3-2-7 ترازو. 57
3-2-8 میکروسکوپ الکترونی پویشی.. 57
3-2-9 دستگاه اولتراسونیک... 59
3-2-10 دستگاه کدورت سنج.. 59
3-3 آزمایشات انجام شده. 59
3-3-1 آزمایش COD.. 60
3-3-1-1 محلول اسید سولفوریک... 60
3-3-1-2 محلول هاضم.. 60
3-3-1-3 منحنی استاندارد برای سنجش COD.. 61
3-3-2 اندازه گیری غلظت گلوکز. 61
3-3-3 اندازه گیری کل مواد جامد (TS) 63
3-3-4 اندازه گیری کل جامدات معلق (TSS) 63
3-3-5 اندازه گیری کدورت.. 64
3-3-6 اندازه گیری دما 64
3-3-7 اندازه گیری pH.. 64
3-3-8 غنی سازی میکروبی پیل سوختی و سازگاری میکرو ارگانیسیم ها با پساب.. 65
3-4 نحوه انجام محاسبات.. 69
3-4-1 اندازه گیری جریان و توان.. 69
3-4-2 نمودار پلاریزاسیون، چگالی توان و اندازه گیری مقاومت درونی.. 69
3-4-3 محاسبه بازدهی عملیاتی پیل سوختی میکروبی.. 70
فصل چهارم: بحث و نتایج
4 پیشگفتار. 72
4-1 اندازه گیری ولتاژ مدار باز. 73
4-2 تاثیر مقاومت خارجی بر عملکرد پیل سوختی میکروبی تک محفظهای.. 77
4-2-1 اعمال مقاومت های خارجی پایینتر و مقایسه عملکرد سیستم.. 80
4-2-2 اعمال مقاومت خارجی 100 و 50 اهم.. 84
4-2-3 نمودار پلاریزاسیون و چگالی توان.. 88
4-2-4 بررسی کاهش کدورت پساب.. 91
4-2-5 بررسی کاهش اکسیژن خواهی شیمیایی.. 92
4-3 بررسی اثر دما بر فعالیت پیل سوختی میکروبی، جریان و چگالی توان.. 93
4-4 بررسی اثر pH بر عملکرد پیل سوختی میکروبی.. 95
4-5 بررسی تأثیر غلظت پساب بر عملکرد سامانه. 96
4-6 منحنی مصرف قند. 99
4-7 محاسبه بازدهی عملیاتی پیل سوختی میکروبی تک محفظه ای.. 99
4-7-1 بازدهی پتانسیل (PE) 99
4-7-2 بازده کلومبیک (CE) 100
4-7-3 بازدهی تبدیل انرژی (ECE) 102
4-8 مقایسه عملکرد پیل سوختی میکروبی.. 102
4-9 ریخت شناسی زیست لایه تشکیل شده بر سطح الکترود آند. 102
فصل پنجم: نتیجه گیری و پیشنهادات
5-1 نتیجه گیری.. 104
5-2 پیشنهادات.. 107
منبع:
[1] N.S. Lewis,D.G. Nocera, (2006), "Powering the planet: Chemical challenges in solar energy utilization", Proceedings of the National Academy of Sciences, 103 15729-15735.
[2] J. Rifkin, (2003), "The Hydrogen Economy", Penguin Group US.
[3] D.R. Lovley, (2006), "Microbial fuel cells: novel microbial physiologies and engineering approaches", Current opinion in biotechnology, 17 327-332.
[4] C.M. Drapcho, N.P. Nhuan,T.H. Walker, Biofuels engineering process technology, McGraw-Hill New York, NY, USA:2008.
[5] L. Zhuang, C. Feng, S. Zhou, Y. Li,Y. Wang, (2010), "Comparison of membrane-and cloth-cathode assembly for scalable microbial fuel cells: construction, performance and cost", Process Biochemistry, 45 929-934.
[6] U. Desideri,A. Paolucci, (1999), "Performance modelling of a carbon dioxide removal system for power plants", Energy Conversion and Management, 40 1899-1915.
[7] B.E. Logan,J.M. Regan, (2006), "Microbial fuel cells-challenges and applications", Environmental science & technology, 40 5172-5180.
[8] I.A. Ieropoulos, J. Greenman, C. Melhuish,J. Hart, (2005), "Comparative study of three types of microbial fuel cell", Enzyme and microbial technology, 37 238-245.
[9] M.C. Potter, (1911), "Electrical effects accompanying the decomposition of organic compounds", Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 260-276.
[10] A. Shukla, P. Suresh, S. Berchmans,A. Rajendran, (2004), "Biological fuel cells and their applications", Current Science, 87 455-468.
[11] D. Pant, G. Van Bogaert, L. Diels,K. Vanbroekhoven, (2010), "A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production", Bioresource technology, 101 1533-1543.
[12] M. Rahimnejad, G. Bakeri, G. Najafpour, M. Ghasemi,S.-E. Oh, (2014), "A review on the effect of proton exchange membranes in microbial fuel cells", Biofuel Research Journal, 1 7-15.
[13] J. Atchison,J. Hettenhaus, (2003), "Innovative Methods for Corn Stover Collecting", Handling, Storing and Transporting, prepared for the National Renewable Energy Laboratory.
[14] B.E. Logan,J.M. Regan, (2006), "Electricity-producing bacterial communities in microbial fuel cells", TRENDS in Microbiology, 14 512-518.
[15] J. Niessen, U. Schröder, F. Harnisch,F. Scholz, (2005), "Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation", Letters in applied microbiology, 41 286-290.
[16] Y. Zuo, P.-C. Maness,B.E. Logan, (2006), "Electricity production from steam-exploded corn stover biomass", Energy & Fuels, 20 1716-1721.
[17] H. Kim, M. Hyun, I. Chang,B.H. Kim, (1999), "A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens", J. Microbiol. Biotechnol, 9 365-367.
[18] I.S. Chang, B.H. Kim, H.J. Kim, D.H. Park,P.K. Shin, Mediator-less biofuel cell, Google Patents, 1999.
[19] H. Liu, R. Ramnarayanan,B.E. Logan, (2004), "Production of electricity during wastewater treatment using a single chamber microbial fuel cell", Environmental science & technology, 38 2281-2285.
[20] C.E. Reimers, L.M. Tender, S. Fertig,W. Wang, (2001), "Harvesting energy from the marine sediment-water interface", Environmental science & technology, 35 192-195.
[21] K. Rabaey, G. Lissens, S.D. Siciliano,W. Verstraete, (2003), "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency", Biotechnology letters, 25 1531-1535.
[22] J. Ditzig, H. Liu,B.E. Logan, (2007), "Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)", International Journal of Hydrogen Energy, 32 2296-2304.
[23] H. Liu, S. Cheng,B.E. Logan, (2005), "Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration", Environmental science & technology, 39 5488-5493.
[24] I.S. Chang, J.K. Jang, G.C. Gil, M. Kim, H.J. Kim, B.W. Cho,B.H. Kim, (2004), "Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor", Biosensors and Bioelectronics, 19 607-613.
[25] D.R. Bond,D.R. Lovley, (2003), "Electricity production by Geobacter sulfurreducens attached to electrodes", Applied and environmental microbiology, 69 1548-1555.
[26] D. Park, M. Laivenieks, M. Guettler, M. Jain,J. Zeikus, (1999), "Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production", Applied and environmental microbiology, 65 2912-2917.
[27] D.R. Bond, D.E. Holmes, L.M. Tender,D.R. Lovley, (2002), "Electrode-reducing microorganisms that harvest energy from marine sediments", Science, 295 483-485.
[28] B.E. Logan, (2004), "Peer reviewed: extracting hydrogen and electricity from renewable resources", Environmental science & technology, 38 160A-167A.
[29] K. Rabaey,W. Verstraete, (2005), "Microbial fuel cells: novel biotechnology for energy generation", TRENDS in Biotechnology, 23 291-298.
[30] K. Rabaey, N. Boon, M. Höfte,W. Verstraete, (2005), "Microbial phenazine production enhances electron transfer in biofuel cells", Environmental science & technology, 39 3401-3408.
[31] K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege,W. Verstraete, (2004), "Biofuel cells select for microbial consortia that self-mediate electron transfer", Applied and Environmental Microbiology, 70 5373-5382.
[32] B. Virdis, S. Freguia, R. Rozendal, K. Rabaey, Z. Yuan,J. Keller, (2011), "Microbial fuel cells".
[33] P. NABIR, (2005), "Composition, reactivity, and regulation of extracellular metal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria".
[34] G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen,D.R. Lovley, (2005), "Extracellular electron transfer via microbial nanowires", Nature, 435 1098-1101.
[35] R. Arechederra,S.D. Minteer, (2008), "Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes", Electrochimica Acta, 53 6698-6703.
[36] K. Rabaey, Bioelectrochemical systems: from extracellular electron transfer to biotechnological application, IWA publishing2010.
[37] M. Zhou, M. Chi, J. Luo, H. He,T. Jin, (2011), "An overview of electrode materials in microbial fuel cells", Journal of Power Sources, 196 4427-4435.
[38] S.-E. Oh,B.E. Logan, (2006), "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells", Applied microbiology and biotechnology, 70 162-169.
[39] S.K. Chaudhuri,D.R. Lovley, (2003), "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells", Nature biotechnology, 21 1229-1232.
[40] H. Liu,B.E. Logan, (2004), "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane", Environmental science & technology, 38 4040-4046.
[41] C. Reimers, P. Girguis, H. Stecher, L. Tender, N. Ryckelynck,P. Whaling, (2006), "Microbial fuel cell energy from an ocean cold seep", Geobiology, 4 123-136.
[42] B.E. Logan, Microbial fuel cells, John Wiley & Sons2008.
[43] P. Aelterman, K. Rabaey, H.T. Pham, N. Boon,W. Verstraete, (2006), "Continuous electricity generation at high voltages and currents using stacked microbial fuel cells", Environmental science & technology, 40 3388-3394.
[44] J. Heilmann,B.E. Logan, (2006), "Production of electricity from proteins using a microbial fuel cell", Water Environment Research, 78 531-537.
[45] K. Rabaey, K. Van de Sompel, L. Maignien, N. Boon, P. Aelterman, P. Clauwaert, L. De Schamphelaire, H.T. Pham, J. Vermeulen,M. Verhaege, (2006), "Microbial fuel cells for sulfide removal", Environmental science & technology, 40 5218-5224.
[46] K. Rabaey, P. Clauwaert, P. Aelterman,W. Verstraete, (2005), "Tubular microbial fuel cells for efficient electricity generation", Environmental science & technology, 39 8077-8082.
[47] B. Logan, S. Cheng, V. Watson,G. Estadt, (2007), "Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells", Environmental science & technology, 41 3341-3346.
[48] S. Cheng, H. Liu,B.E. Logan, (2006), "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environmental science & technology, 40 364-369.
[49] R.A. Rozendal, H.V. Hamelers,C.J. Buisman, (2006), "Effects of membrane cation transport on pH and microbial fuel cell performance", Environmental science & technology, 40 5206-5211.
[50] Z. He, S.D. Minteer,L.T. Angenent, (2005), "Electricity generation from artificial wastewater using an upflow microbial fuel cell", Environmental science & technology, 39 5262-5267.
[51] K. Rabaey, W. Ossieur, M. Verhaege,W. Verstraete, (2005), "Continuous microbial fuel cells convert carbohydrates to electricity", Water Science & Technology, 52 515-523.
[52] H. Liu, S. Cheng,B.E. Logan, (2005), "Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell", Environmental science & technology, 39 658-662.
[53] S. Cheng, H. Liu,B.E. Logan, (2006), "Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing", Environmental Science & Technology, 40 2426-2432.
[54] B.R. Ringeisen, E. Henderson, P.K. Wu, J. Pietron, R. Ray, B. Little, J.C. Biffinger,J.M. Jones-Meehan, (2006), "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10", Environmental Science & Technology, 40 2629-2634.
[55] J.R. Kim, S. Cheng, S.-E. Oh,B.E. Logan, (2007), "Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells", Environmental Science & Technology, 41 1004-1009.
[56] R.E. McKinney, Environmental pollution control microbiology: a fifty-year perspective, CRC Press2004.
[57] Z. Du, H. Li,T. Gu, (2007), "A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy", Biotechnology advances, 25 464-482.
[58] D.H. Park,J.G. Zeikus, (2003), "Improved fuel cell and electrode designs for producing electricity from microbial degradation", Biotechnology and bioengineering, 81 348-355.
[59] H. Liu, S. Cheng, L. Huang,B.E. Logan, (2008), "Scale-up of membrane-free single-chamber microbial fuel cells", Journal of Power Sources, 179 274-279.
[60] Y. Ahn,B.E. Logan, (2010), "Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures", Bioresource technology, 101 469-475.
[61] S.i. Ishii, K. Watanabe, S. Yabuki, B.E. Logan,Y. Sekiguchi, (2008), "Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell", Applied and environmental microbiology, 74 7348-7355.
[62] J.R. Kim, S.H. Jung, J.M. Regan,B.E. Logan, (2007), "Electricity generation and microbial community analysis of alcohol powered microbial fuel cells", Bioresource technology, 98 2568-2577.
[63] H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim,B.H. Kim, (2002), "A mediator-less microbial fuel cell using a metal reducing bacterium,< i> Shewanella putrefaciens", Enzyme and Microbial Technology, 30 145-152.
[64] S.-J. You, X.-H. Wang, J.-N. Zhang, J.-Y. Wang, N.-Q. Ren,X.-B. Gong, (2011), "Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell", Biosensors and Bioelectronics, 26 2142-2146.
[65] J. Wei, P. Liang,X. Huang, (2011), "Recent progress in electrodes for microbial fuel cells", Bioresource technology, 102 9335-9344.
[66] X. Zhang, S. Cheng, X. Wang, X. Huang,B.E. Logan, (2009), "Separator characteristics for increasing performance of microbial fuel cells", Environmental science & technology, 43 8456-8461.
[67] X. Wang, S. Cheng, Y. Feng, M.D. Merrill, T. Saito,B.E. Logan, (2009), "Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells", Environmental science & technology, 43 6870-6874.
[68] F. Zhao, N. Rahunen, J.R. Varcoe, A. Chandra, C. Avignone-Rossa, A.E. Thumser,R.C. Slade, (2008), "Activated carbon cloth as anode for sulfate removal in a microbial fuel cell", Environmental science & technology, 42 4971-4976.
[69] D. Jiang,B. Li, (2009), "Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs)".
[70] S. Cheng, H. Liu,B.E. Logan, (2006), "Increased performance of single-chamber microbial fuel cells using an improved cathode structure", Electrochemistry Communications, 8 489-494.
[71] F. Zhang, T. Saito, S. Cheng, M.A. Hickner,B.E. Logan, (2010), "Microbial fuel cell cathodes with poly (dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors", Environmental science & technology, 44 1490-1495.
[72] B. Cercado-Quezada, M.-L. Delia,A. Bergel, (2010), "Testing various food-industry wastes for electricity production in microbial fuel cell", Bioresource technology, 101 2748-2754.
[73] T. Catal, S. Xu, K. Li, H. Bermek,H. Liu, (2008), "Electricity generation from polyalcohols in single-chamber microbial fuel cells", Biosensors and Bioelectronics, 24 849-854.
[74] T. Catal, K. Li, H. Bermek,H. Liu, (2008), "Electricity production from twelve monosaccharides using microbial fuel cells", Journal of Power Sources, 175 196-200.
[75] Y. Feng, X. Wang, B.E. Logan,H. Lee, (2008), "Brewery wastewater treatment using air-cathode microbial fuel cells", Applied microbiology and biotechnology, 78 873-880.
[76] Q. Wen, Y. Wu, D. Cao, L. Zhao,Q. Sun, (2009), "Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater", Bioresource technology, 100 4171-4175.
[77] L. Huang,B.E. Logan, (2008), "Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell", Applied microbiology and biotechnology, 80 349-355.
[78] Z. Liu, J. Liu, S. Zhang,Z. Su, (2009), "Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon-and protein-rich substrates", Biochemical Engineering Journal, 45 185-191.
[79] B. Min, J. Kim, S. Oh, J.M. Regan,B.E. Logan, (2005), "Electricity generation from swine wastewater using microbial fuel cells", Water research, 39 4961-4968.
[80] J. Hou, Z. Liu, S. Yang,Y. Zhou, (2014), "Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells", Journal of Power Sources, 258 204-209.
[81] L. Clesceri, A. Greenberg,A. Eaton, "Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, 1998", There is no corresponding record for this reference.
[82] J.M. Morris,S. Jin, (2008), "Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater", Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 43 18-23.
[83] H.-S. Lee, P. Parameswaran, A. Kato-Marcus, C.I. Torres,B.E. Rittmann, (2008), "Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates", Water research, 42 1501-1510.
[84] S.M. Bhairi,C. Mohan, Detergents, Calbiochem-Novabiochem1997.
[85] J.B. Benziger, M.B. Satterfield, W.H. Hogarth, J.P. Nehlsen,I.G. Kevrekidis, (2006), "The power performance curve for engineering analysis of fuel cells", Journal of power sources, 155 272-285.
[86] K.P. Katuri,K. Scott, (2011), "On the dynamic response of the anode in microbial fuel cells", Enzyme and microbial technology, 48 351-358.
[87] L. Zhang, X. Zhu, J. Li, Q. Liao,D. Ye, (2011), "Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances", Journal of Power Sources, 196 6029-6035.
[88] N. Lu, S.-g. Zhou, L. Zhuang, J.-t. Zhang,J.-r. Ni, (2009), "Electricity generation from starch processing wastewater using microbial fuel cell technology", Biochemical Engineering Journal, 43 246-251.
[89] Y. Luo, G. Liu, R. Zhang,C. Zhang, (2010), "Power generation from furfural using the microbial fuel cell", Journal of Power Sources, 195 190-194.
[90] V.J. Watson,B.E. Logan, (2011), "Analysis of polarization methods for elimination of power overshoot in microbial fuel cells", Electrochemistry communications, 13 54-56.
[91] B. Min, Ó.B. Román,I. Angelidaki, (2008), "Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance", Biotechnology letters, 30 1213-1218.
[92] X. Zhu, J.C. Tokash, Y. Hong,B.E. Logan, (2013), "Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials", Bioelectrochemistry, 90 30-35.
[93] S.A. Patil, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y. Shouche,B. Kapadnis, (2009), "Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber", Bioresource technology, 100 5132-5139.
[94] M.M. Mardanpour, M.N. Esfahany, T. Behzad,R. Sedaqatvand, (2012), "Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment", Biosensors and Bioelectronics, 38 264-269.