پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب

word 11 MB 31813 107
1389 کارشناسی ارشد محیط زیست و انرژی
قیمت قبل:۷۳,۱۰۰ تومان
قیمت با تخفیف: ۳۳,۷۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • پایان نامه برای دریافت درجه کارشناسی ارشد “M.Sc”

     مهندسی شیمی – محیط زیست

    چکیده:

    پیل های سوختی میکروبیولوژیکی (MFC) به عنوان یکی پتانسیل های مهم در تامین انرژی پاک و تجدید پذیر آینده مطرح می باشند. MFC ها علاوه بر تامین انرژی از نوع الکتریکی که در میان سایر انواع انرژی ها، پرکاربرد ترین و انعطاف پذیر ترین می باشد، نه تنها کوچکترین آلودگی برای محیط زیست ایجاد نمی کنند بلکه در تصفیه و از بین بردن آلودگی های زیست محیطی از قبیل فاضلاب شهری و شیرابه حاصل از پسماندهای جامد شهری تاثیر بسزایی دارند. فصل اول این تحقیق مروری است بر تکنولوژی پیل های سوختی میکروبیولوژیکی. فصل دوم به مباحث فنی و مبانی ریاضی پیل های سوختی  از بدو  تا به امروز می پردازد که پایه و اساس مدل ارائه شده در فصل سوم می باشد. در فصل سوم، با بررسی دقیق تر کارهای ارائه شده توسط محقیقن مختلف و استفاده از فرضیات و همچنین داده های تجربی ارائه شده در مقالات مختلف، مدلی مناسب برای پیل سوختی میکروبیولوژیکی دو محفظه ای (Double Chamber) ارائه شده است که با استفاده از این مدل، نمودارهای مختلف مربوط به توان، شدت جریان و اختلاف پتانسیل حاصل از این نوع پیل سوختی ترسیم شده است. فصل چهارم به ارائه  نتیجه گیری کلی در زمینه پیل های سوختی میکروبیولوژیکی و مدلسازی ریاضی آن ها می پردازد.

    مقدمه:

     

    با پشت سر گذاشتن عصر صنعتی و ورود به عصر اطلاعات، استفاده بی رویه بشر از منابع سوخت های فسیلی و تجدید ناپذیر در توسعه و پیشرفت صنعت طی دهه های اخیر، زندگی انسان های امروزی را با تهدیدات جدی زیست محیطی مواجه ساخته است به طوریکه تغییرات اقلیمی نه به عنوان یک چالش منطقه ای بلکه به عنوان یک مسئله جهانی مطرح است. تشکیل مجماع، کُمیسیون ها و تشکل های جهانی و تصویب قوانین، کنوانسیون ها و پروتوکل های مختلف در سطح جهانی مثل پیمان کیوتو و کنوانسیون بازل و همچنین تعریف پروژه هایی مثل پروژه های مکانیسم توسعه پاک (CDM) همگی گواه بر اهمیت این موضوع می باشند. علاوه بر این، خبر رو به پایان بودن منابع نفتی دنیا تا 30 الی 40 سال آینده، کشورهای مختلف را بر این داشته است که به طور جدی به دنبال منابع تجدید پذیر و جایگزین باشند تا بتوانند امنیت انرژی خود را در آینده تامین نمایند.

    پیل های سوختی میکروبیولوژیکی (MFC) به عنوان یکی پتانسیل های مهم در تامین انرژی پاک و تجدید پذیر آینده مطرح می باشند. MFC ها علاوه بر تامین انرژی از نوع الکتریکی که در میان سایر انواع انرژی ها، پرکاربرد ترین و انعطاف پذیر ترین می باشد، نه تنها کوچکترین آلودگی برای محیط زیست ایجاد نمی کنند بلکه در تصفیه و از بین بردن آلودگی های زیست محیطی از قبیل فاضلاب شهری و شیرابه حاصل از پسماندهای جامد شهری تاثیر بسزایی دارند.

    در حال حاضر، تکنولوژی MFC ها به دلیل راندمان پایین هنوز به تولید تجاری و انبوه نرسیده است. با تجاری شدن این صنعت، موضوع فاضلاب شهری نه تنها به عنوان یک مشکل بلکه به عنوان یک منبع تامین انرژی پاک مطرح خواهد بود به این دلیل که فاضلاب شهری منبع غنی میکروارگانیسم های مورد استفاده در پیل های سوختی میکروبیولوژیکی می باشد.

    مدلسازی ریاضی پیل های سوختی میکروبی این امکان را فراهم می سازد که محققین با تغییر پارامترهای تاثیرگذار بر راندمان پیل های سوختی میکروبیولوژیکی و بدون انجام آزمایشات متعدد و زمان بر بتوانند تغییرات حاصل در توان تولید شده را پیش بینی نموده و به اصلاح طرح خود بپردازند. در این تحقیق سعی شده است مدلی مناسب برای پیش بینی چنین تغییراتی ارائه شود.

     

     

    فصل اول

     

     

    درآمدی بر پیل سوختی میکروبیولوژیکی

     

    فصل اول : درآمدی بر پیل سوختی میکروبیولوژیکی

    1-1)مفاهیم

    پیل سوختی میکروبی به راکتوری اطلاق می شود که انرژی شیمیایی ذخیره شده در پیوندهای شیمیایی ترکیبات آلی را از طریق واکنش های کاتالیستی میکروارگانیسم ها و تحت شرایط بی هوازی به انرژی الکتریکی تبدیل کند. سالهاست که دانشمندان به این موضوع پی برده اند که می توان مستقیما" و با استفاده از باکتری ها، مواد آلی را تجزیه کرد و الکتریسیته تولید نمود. در تصفیه فاضلاب نیز می توان از MFC ها برای تجزیه مواد آلی استفاده نمود. علاوه براین، طی مقالاتی سعی شده که از MFC ها به عنوان سنسورهای بیولوژیکی از قبیل سنسورهای نمایشگر BOD استفاده شود. توان خروجی و بازدهی کلمب در MFC ها تحت تاثیر عواملی نظیر: نوع میکروبهای موجود در سلول آند، پیکربندی MFC و شرایط عملیاتی می باشد. در حال حاضر کاربرد های عملی MFC ها محدود می باشد زیرا میزان توان خروجی آنها پایین و در حد چند هزار میلی وات بر مترمربع (mW/m2) می باشد. دانشمندان در تلاشند تا عملکرد MFC ها را بهبود بخشیده و هزینه های ساخت و عملیاتی آنها را کاهش دهند. مقاله حاضر در تلاش است تا مروری کلی بر پیشرفت های اخیر در مطالعه و پیشبرد MFC ها داشته و بیشتر، پیکربندی و بازدهی MFC ها تشریح شده است.

    افزایش روزافزون استفاده بی رویه از سوخت های فسیلی، جهان را با بحران انرژی ماجه ساخته است. انرژی تجدیدپذیر بیولوژیکی یکی از گزینه های مناسب برای جبران بخشی لز نیاز جوامع بشری به انرژی می باشد. اخیرا"، مطالعات زیادی برای توسعه روش های مختلف تولید انرژی انجام می گردد. در این میان، تولید الکتریسیته از منابع تجدیدپذیر که دی اکسیدکربن به محیط انتشار نمی کند بیش از هر روش دیگری مورد توجه است (Lovley، 2006، Davis و Hingson، 2007). اخیرا"، تکنولوژی پیل های سوختی میکروبی، MFCها، که انرژی ذخیره شده در پیوندهای ترکیبات آلی را از طریق واکنشهای کاتالیستی توسط میکروارگانیسم ها به انرژی الکتریکی تبدیل می کند مورد توجه ویژه ای واقع شده است (Allen و Bennetto، 1993؛ Gil و همکارانش، 2003؛ Moon و همکارانش، 2006؛ Choi و همکارانش، 2003).

    ABSTRACT

     

    It’s been reported in various articles that microbial fuel cell is a promising potential source of renewable and clean energy alternative to supply the future demand of mankind for energy. In addition to generating electrical energy which is the most versatile and flexible form of energy, MFCs not only are capable of treating the environmental pollutants i.e. municipal wastewater (sewage) and leachate, they are of almost zero discharge to the environment.

    First chapter of this research focuses on overview of Microbial Fuel cell Technology. Chapter two concentrates on technical and mathematical fundamentals of fuel cells from past up to the time being which provides the basics in mathematical modeling of microbial fuel cells.

    In chapter three, after an investigation of the reports and articles that involved in different aspects of mathematical modeling of MFCs, using the suppositions and experimental data that were reported in various articles, an appropriate model for a double chamber MFC has been developed. Making use of the obtained mathematical model, curves of generated power, voltage, and current were drawn. Finally, Chapter four provides a general conclusion on mathematical modeling of microbial fuel cells and its applications

  • فهرست:

    چکیده

    1

    مقدمه

    2

    فصل اول : درآمدی بر پیل سوختی میکروبیولوژیکی

    3

     مفاهیم

    4

     مروری بر واسط های حمل الکترون در MFC ها

    7

     میکروب هایی که در پیل های سوختی میکروبی کاربرد دارند

    8

    پیکربندی پیل های سوختی میکروبی

    12

    اجزای MFC

    12

    سیستمهای MFC دو جزئی

    13

    سیستمهای MFC تک جزئی

    16

    1-4-4)      سیستمهای MFC نوع Up-flow

    19

    1-4-5)      پیل سوختی میکروبی انباشته (stacked)

    21

    عملکرد MFC ها

    22

    1-5-1) عملکرد ایده آل

    22

    1-5-2) بازدهی واقعی MFC

    24

    1-5-3) تاثیر شرایط عملیاتی

    26

    1-5-4) تاثیر جنس الکترودها

    27

    1-5-5) بافر pH و الکترولیت

    29

    1-5-6) سیستم مبادله پروتون

    30

    1-5-7) شرایط عملیاتی در محفظه آند

    31

    1-5-8) شرایط عملیاتی در محفظه کاتد

    32

    کاربردها

    34

    1-6-1) تولید الکتریسیته

    34

    1-6-2) بیوهیدروژن (Biohydrogen)

    36

    1-6-3) تصفیه فاضلاب

    37

    1-6-4) سنسورهای بیولوژیکی (Biosensors)

    38

    چشم انداز MFC ها

    39

    فصل دوم : مباحث فنی پیل های سوختی

    41

    2-1) ولتاژ پیل و پتانسیل الکترود ها

    42

    2-2) وابستگی ولتاژ پیل تعادلی به غلظت: معادله عمومی Nernst

    44

    2-3) پتانسیل های فلز/یون فلزی (+M/Mz)

    46

    2-4) پتانسیل های اکسایش/کاهش (RED/OX)

    48

    2-5) کاربرد معادله Nernst در وابستگی پتانسیل RedOx به غلظت

    50

    2-6) محاسبه پتانسیل های تعادلی الکترود

    51

    2-7) الکترود هیدروژن

    52

    2-8) الکترودهای فلز/نمک نامحلول/یون

    54

    2-9) الکترود کالومل

    56

    2-10) الکترود نقره/کلرید نقره

    57

    2-11) الکترود جیوه-سولفات جیوه

    59

    2-12) پتانسیل الکترود های استاندارد

    60

    2-13) غلظت و فعالیت

    62

    2-14) تئوری ضریب فعالیت Debye-Hückel: مدل نقطه-بار

    63

    2-15) تئوری ضریب فعالیت Debye-Hückel: مدل اندازه محدود یون

    65

    2-16) تصحیح Stokes-Robinson تئوری Debye-Hückel تاثیر اثر متقابل یون-حلال

    66

    فصل سوم : مدلسازی ریاضی پیل سوختی میکروبیوژیکی

    68

    3-1) ساختار کلی MFC مورد نظر برای مدلسازی

    69

    3-2) توسعه مدل

    69

    3-3) سرعت واکنش ها

    71

    3-4) حل مسئله

    78

    3-5) محاسبه پارامترها

    78

    3-6) بحث و نتیجه گیری

    83

    فصل چهارم : نتیجه گیری و پیشنهادات

    84

     

     

    فهرست مطالب

    عنوان مطالب

    شماره صفحه

                                                                                                          

    منابع و ماخذ

    86

    فهرست منابع فارسی

    86

    فهرست منابع لاتین

    87

    سایت های اطلاع رسانی

    97

    چکیده انگلیسی

    98

     

    منبع:

    فهرست منابع فارسی

    مختاریان نادر، رحیم نژاد مصطفی، نجف پور قاسم، قریشی سیدعلی اصغر، تعیین میکرو ارگانیسم ها و همچنین محیط های کشت مناسب جهت استفاده در پیل های سوختی میکروبیولوژیکی به عنوان منبع پاک انرژی، ششمین همایش ملی بیوتکنولوژیکی جمهوری اسلامی ایران، مرداد 1388

     

     

    فهرست منابع  لاتین

    Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 2006;40:3388–94.

    Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol 1993;39/40:27–40.

    Andrea E., Manana M., Ortiz A., Renedo C., Eguiluz L.I., Perez S., Delgado F., A simplified electrical model of small PEM fuel cell, Department of electrical engineering, E.T.S.I.I.T. University of Cantabria, Spain, 2006.

    Angenent LT,KarimK, Al-DahhanMH,WrennBA, Domíguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 2004;9:477–85.

    Appleby AJ, Fouldes FR. Fuel cell handbook. New York: Van Nostrand Reinhold; 1989.

    B.E. Conway, in physical Chemistry, an advanced Treatise, Vol. 1XA, H.Eyring, ed., Academic Press New York, 1970.

    Back JH, Kim MS, Cho H, Chang IS, Lee J, Kim KS, et al. Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol Lett 2004;238:65–70.

    Bennetto HP, Dew ME, Stirling JL, Tanaka K (1981) Rates of reduction of phenothiazine ‘redox’ dyes by E. coli. Chem Ind 7: 776–778

    Bennetto HP. Microbial fuel cells. Life Chem Rep 1984;2:363–453.

    BergelA, FeronD,MollicaA. Catalysis of oxygen reduction in PEMfuel cell by seawater biofilm. Electrochem Commun 2005;7:900–4.

    Beun JJ, Van Loosdrecht MCM, Heijnen JJ (2001) N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol Bioeng 75(1):82–92

    Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002;295:483–5.

    Bond DR, LovleyDR. Electricity production byGeobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 2003;69:1548–55.

    Bullen RA, Arnot TC, Lakeman JB, Walsh FC. Biofuel cells and their development. Biosens Bioelectron 2006;21:2015–45.

    Bullen RA, Arnot TC, Lakemanc JB, Walsh FC (2005) Biofuel cells and their development. Biosens Bioelectron 21(11):2015–2045

    Chang IS, Jang JK, Gil GC,KimM, Kim HJ, Cho BW, et al. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 2004;19:607–13.

    Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, et al. Electrochemically active bacteria (EAB) and mediator-less Microbial fuel cells. J Microbiol Biotechnol 2006;16:163–77.

    Chang IS, Moon H, Bretschger O, Jang JK, Park HI, Nealson KH, Kim BH (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J Microbiol Biotechnol 16(2): 163–177

    Chang IS, Moon H, Jang JK, Kim BH. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 2005;20:1856–9.

    Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 2003;21:1229–32.

    Cheng S, Liu H, Logan BE. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 2006a;8:489–94.

    Cheng S, Liu H, Logan BE. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 2006b;40:2426–32.

    Cheng S, Liu H, Logan BE. Power densities using different cathode catalyst (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 2006c;40:364–9.

    Chia M.Aminiaturizedmicrobial fuel cell. Technical digest of solid state sensors and actuatorsworkshop,HiltonHead Island; 2002. p. 59–60.

    Choi Y, Jung E, Kim S, Jung S. Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry 2003;59:121–7.

    Davis F, Higson SPJ. Biofuel cells—recent advances and applications. Biosens Bioelectron 2007;22:1224–35.

    Deep Pant, Gilbert Van Bogaert, Ludo Diels, Karolien Vanbroekhoven, A review of the substrates used in microbial  fuel cells for sustainable energy production, Elsevier, Bioresource Technology 101 (2010) 1533-1543, 2010.

    Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF. Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediatorsubstrate combinations. J Chem Tech Biotechnol 1984;34B:13–27.

    Delaney GM, Bennetto HP, Mason JR, Roller SD, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuel cell. 2. Performance of fuel cells containing selected microorganisms-mediator-substrate combination. J Chem Technol Biotechnol 34B:13–27

    Delong EF, Chandler P. Power from the deep. Nat Biotechnol 2002;20:788–9.

    Fuel cell handbook (2004) 7th edn. E.G&G Technical Services, Parsons, Inc. for the National Energy Technology Laboratory, www.netl.doe.gov/seca/pubs/FCHandbook7.pdf

    Gil GC, Chang IS, Kim BH, Kim M, Jang JY, Park HS, et al. Operational parameters affecting the performance of a mediatorless microbial fuel cell. Biosens Bioelectron 2003;18:327–34.

    Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration. EnvironMicrobiol 2004;6:596–604.

    Grzebyk M, Pozniak G. Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol 2005;41:321–8.

    Habermann W, Pommer EH. Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 1991;35:128–33.

    He Z, Minteer SD, Angenent L. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 2005;39:5262–7.

    He Z, Wagner N, Minteer SD, Angenent LT. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 2006;40:5212–7

    Heijnen JJ (1999) Bioenergetics of microbial growth. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, bioseparation. Wiley- Interscience, New York, pp 267–291

    Henze, M., Gujer, W., Mino, T. and Van Loosdrecht, M.C.M. (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Scientific & Technical Report, IWA Publishing, London, UK

    Hernandez ME, Newman DK. Extracellular electron transfer. Cell Mol Life Sci 2001;58:1562–71.

    Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecol 2004;48:178–90.

    Holzman DC. Microbe power. Environ Health Persp 2005;113:A754–7.

    Ieropolulos I, Melhuish C, Greenman J. Artificial metabolism: towards true energetic autonomy in artificial life. Lect Notes Comput Sc 2003b;2801:792–9.

    Ieropoulos I, Greenman J, Melhuish C, Hart J. Energy accumulation and improved performance in microbial fuel cells. J Power Sources 2005b;145:253–6.

    Ieropoulos I, Greenman J, Melhuish C. Imitation metabolism: energy autonomy in biologically inspired robots. Proceedings of the 2nd international symposium on imitation of animals and artifacts; 2003a. p. 191–4.

    Ieropoulos I, Melhuish C, Greenman J. EcoBot-II: an artificial agent with a natural metabolism. Adv Robot Syst 2005c;2:295–300.

    Ieropoulos I,Melhuish C, Greenman J. Energetically autonomous robots.In: Groen F, et al, editor. Intelligent autonomous systems, vol. 8. Amsterdam: IOS Press; 2004. p. 128–35. (March, 2004).

    Ieropoulos IA, Greenman J, Melhuish C, Hart J. Comparative study of three types of microbial fuel cell. Enzyme Microb Tech 2005a;37:238–45.

    J.Albery, Electrode Kinetics, Clarendon Press, Oxford, 1975.

    J.Goodisman, Electrochemistry: Theoretical Foundations, Wiley, New York, 1987.

    J.M. West, Electrodeposition and corrosion Processes, Van Nostrand Reinhold, London, 1970.

    J.O’m. Bockris and A.K.N. Reddy, Modern Electrochemistry, Vol.1, Plenum Press, New York, 1970

    J.P. Simonin, L.Blum, and P.Turq, J.Phys. Chem. 100, 7704 (1996).

    Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, et al. Construction and operation of a novel mediator-and membraneless microbial fuel cell. Process Biochem 2004;39:1007–12.

    Joo-Youn Nam, Hyun-Woo Kim, Kyeong-Ho Lim, Hang-Sik Shin, Effects of organic loading rates on continuous electricity generation from fermented wastewater using a single chamber microbial fuel cell, Elsevier, Bioresource Technology 101 (2010) 533-537, 2010.

    Jung Rae Kim, Sok Hee Jung, John M.Regan, Bruce E.Logan, Electricity generation and microbial community analysis of Alcohol powered microbial fuel cells, Elsevier, Bioresource Technology 98 (2007) 2568-2577, 2007.

    K.J. Vetter, Electrochemical Kinetics:Theoretical Aspects, Academic Press, New York, 1967

    Kang KH, Jang JK, PhamTH,Moon H, Chang IS,Kim BH. Amicrobial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 2003;25:1357–61.

    Kato-Marcus A, Torres CI, Rittmann BE (2007) Conductionbased modeling of the biofilm anode of a microbial fuel cell.Biotechnol Bioeng 98:1171–1182

    Katz E, Shipway AN, Wilner I (2003) Biochemical fuel cells. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handook of fuel cellsfundamentals, technology, application. Wiley, Chichester, pp 355–381

    Kelly Schwartz, Microbial fuel cells: Design Elements and Application of a Novel Renewable Energy Source, MMG 445 Basic Biotechnology eJournal, 2007 www.msu.edu/course/mmg/445/

    Kim BH, Chang IS, Gil GC, Park HS, Kim HJ. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 2003;25:541–5.

    Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrifaciens. J Microbiol Biotechnol 1999a;9:127–31.

    Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, et al. Enrichment of microbial community generating electricity using a fuel-cell type electrochemical cell. Appl Microbiol Biotechnol 2004;63:672–81.

    Kim HJ, Hyun MS, Chang IS, Kim BH. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 1999b;9:365–7.

    Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH. A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Tech 2002;30:145–52.

    Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 2005;68:23–30.

    Kim N, Choi Y, Jung S, Kim S (2000) Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol Bioeng 70:109–114

    Lee SA, Choi Y, Jung S, Kim S. Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry 2002;57:173–8.

    Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 2005b;39:5488–93.

    Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 2005a;39:658–62.

    Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 2004;38: 4040–6.

    Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 2004;28:2281–5.

    Liu ZD, Lian J, Du ZW, Li HR. Construction of sugar-based microbial fuel cells by dissimilatory metal reduction bacteria. Chin J Biotech 2006;21:131–7.

    LiuH,Grot S, LoganBE. Electrochemically assistedmicrobial production of hydrogen from acetate. Environ Sci Tchnol 2005c:4317–20.

    Logan BE, Hamelers B, Rozendal R, Schro¨der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol 2006;40:5181–92.

    LoganBE, Murano C, ScottK,Gray ND, Head IM. Electricity generation from cysteine in a microbial fuel cell. Water Res 2005;39:942–52.

    Lovely DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotech 2006;17:327–32.

    Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC. Humic substances as electron acceptors for microbial respiration. Nature 1996;382:445–8.

    Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 2004;49:219–86.

    Lovley DR. Dissimilatory metal reduction. Annu Rev Microbial 1993;47:263–90.

    Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR. Harvesting energy from the marine sediment–water interface II kinetic activity of anode materials. Biosens Bioelectron 2006;21:2058–63.

    Lusk P. Methane recovery from animal manures: a current opportunities casebook. NREL/SR-580-25145; 1998. Sept.

    Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms. Upper Saddle River: Prentice Hall; 2000.

    Melhuish C, Ieropoulos I, Greenman J Horsfield I. Energetically autonomous robots: food for thought.AutonRobot 2006;21:187–98.

    Menicucci J, Beyenal H, Marsili E, Veluchamy RA, Demir G, Lewandowski Z. Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ Sci Technol 2006;40:1062–8.

    Milan Paunovic and Mordechay Schlesigner, Fundamentals of Electrochemical Deposition, Electrochemical Society Series, ISBN 0-471-16820-3, 1998.

    Min B, Cheng S, Logan BE. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 2005a;39:1675–86.

    Min B, Kim JR, Oh SE, Regan JM, Logan BE. Electricity generation from swine wastewater using microbial fuel cells. Water Res 2005b;39:4961–8.

    Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 2004;38:5809–14.

    Moon H, Chang IS, Jang JK, Kim BH. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem Eng J 2005;27:59–65.

    Moon H, Chang IS, Kim BH. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.Bioresource Technol 2006;97:621–7.

    Moon H, Chang IS,KangKH, Jang JK,KimBH. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 2004;26:1717–21.

    Nevin KP, Lovley DR. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 2000;66:2248–51.

    Newman JS (1991) Electrochemical systems, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Niessen J, Harnisch F, Rosenbaum M, Schroder U, Scholz F. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 2006;8:869–73.

    Niessen J, Schroder U, Rosenbaum M, Scholz F. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 2004a;6:571–5.

    Niessen J, Schroder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation — a bacterial fuel cell operating on starch. Electrochem Commun 2004b;6:955–8.

    Niktabar Yasin, Farmani Marzieh, Khan Mohammadi Iman, Vafajoo Leila, Wastewater Treatment In Microbial Fuel Cells And Significance Of Mathematical Modeling, 2nd International conference on water and wastewater treatment, University of Isfahan, April 2010.

    Niktabar Yasin, Microbial Fuel Cell New Promising Source Of Renewable Energy, Submitted to the Graduate Faculty of the School of Engineering in partial fulfillment of the requirements for the degree of Bachelor of Science, Islamic Azad University of Shahreza, Iran, 2007.

    Oh SE, Logan BE. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 2005;39:4673–82.

    Oh SE, Logan BE. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 2006;70:162–9.

    Oh SE, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 2004;38:4900–44.

    Park DH, Kim BH, Moore B, Hill HAO, Song MK, Rhee HW. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech 1997;11:145–58.

    Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 1999;65:2912–7.

    Park DH, Zeikus JG. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microb 2000;66:1292–7.

    Park DH, Zeikus JG. Impact of electrode composition on electricity generation in a single-compartment fuel cell suing Shewanella putrefaciens. Appl Microbiol Biotechnol 2002;59: 58–61.

    Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 2003;81:348–55.

    Park DH, Zeikus JG. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 1999;181:2403–10.

    Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001;7:297–306.

    Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 2003;223:129–34.

    Pham TH, Jang JK, Chang IS, Kim BH. Improvement of cathode reaction of a mediatorless microbial fuel cell. J Microbiol Biotechnol 2004;14:324–9.

    Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 2006;6:285–92.

    Picioreanu C, Head IM, Katuri KP, Van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940

    Picioreanu C, Katuri KP, Head IM, Van Loosdrecht MCM, Scott K (2008) Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol 57(7):965–971

    Picioreanu C, Van Loosdrecht MCM, Curtis TP, Scott K (2009) Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry (in press). doi:10.1016/j.bioelechem.2009.04.009

    Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Ser B 1912;84:260–76.

    Prasad D, Sivaram TK, Berchmans S, Yegnaraman V. Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. J Power Sources 2006;160:991–6.

    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in C: the art of scientific computing. Cambridge University Press, NY

    Qing Wen, Ying Wu, Dianxue Cao, Lixin Zhao, Qian Sun, electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater, Elsevier,  Bioresource Technology 100 (2009) 4171-4175, 2009.

    R.H. Stockes and R.A. Robinson, J.Am. Chem. Soc. 70, 1870 (1948)

    R.P Pinto, B.Srinivasan, M.F.Manuel, B.Tartakovsky, A two-population bio-electrochemical model of a microbial fuel cell, Elsevier, Bioresource Technology 101 (2010) 5256-5256, 2010.

    Rabaey K, Boon N, Hofte M, Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 2005a;39:3401–8.

    Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microb 2004;70:5373–82.

    Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 2005b;39:8077–82.

    Rabaey K, Lissens G, Siciliano S, Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 2003;25:1531–5.

    Rabaey K, Lissens G, Verstraete W (2005) Microbial fuel cells: performances and perspectives. In: Lens PN, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells: biomass fermentation towards usage in fuel cells. IWA Publishing, London

    Rabaey K, Van De Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, et al. Microbial fuel cells for sulfide removal. Environ Sci Technol 2006;40:5218–24.

    Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 6:291–298

    Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 2005;23:291–8.

    Rhoads A, Beyenal H, Lewandowshi Z. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 2005;39:4666–71.

    Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 2006;40:2629–34.

    Roller SD, Bennetto HP, Delaney GM, Mason JR, Stirling JL, Thurston CF (1984) Electron-transfer coupling in microbial fuelcells. 1. Comparison of redox-mediator reduction rates and respiratory rates of bacteria. J Chem Technol Biotechnol Biotechnol 34:3–12

    RosenbaumM, Schroder U, Scholz F. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbialfuel cell conditions. J Solid State Electrochem 2006;10:872–8.

    Rozendal RA, Hamelers HVM, Buisman CJN. Effects of membrane cation transpoet on pH and microbial fuel cell performance. Environ Sci Technol 2006;40:5206–11.

    S.Transatti, in Comprehensive Treatise of Electrochemistry, Vol. 1, J.O’M. Bockris and B.Conway, eds., Plenum Press, New York, 1980.

    Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98:340–348

    Scholz F, SchroderU. Bacterial batteries.Nat Biotechnol 2003;21:1151–2.

    Schroder U, Nieben J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than on e order of magnitude. Angew Chem Int Ed 2003;42:2880–3.

    Shantaram A, Beyenal H, Veluchamy RRA, Lewandowski Z.Wireless sensors powered by microbial fuel cells. Environ Sci Technol 2005;39:5037–42.

    Shukla AK, Suresh P, Berchmans S, Rahjendran A (2004) Biological fuel cells and their applications. Curr Sci 87:455–468

    Stirling JL, Bennetto HP, Delaney GM, Mason JR, Roller SD, Tanaka K, et al. Microbial fuel cells. Biochem Soc Trans 1983;11:451–3.

    Straub KL, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 2001;34:181–6.

    Suzuki S, Karube I, Matsunaga T. Application of a biochemical fuel cell to wastewater. Biotechnol Bioeng Symp 1978;8:501–11.

    Tartakovsky B Guiot SR. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol Prog 2006;22:241–6.

    Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, et al. Harnessing microbially generated power on the seafloor. Nat Biotechnol 2002;20:821–5.

    Thurston CF, Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to Coulombic yields. J Gen Microbiol 1985;131:1393–401.

    Thurston CF, Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL (1985) Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J Gen Microbiol 131:1393–1401

    Tokuji I, Kenji K. Vioelectrocatalyses-based application of quinoproteins and quinprotein-containing bacterial cells in biosensors and biofuel cells. Biochim Biophys Acta 2003;1647:121–6.

    Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR. Microbiological evidence for Fe(III) reduction on early earth. Nature 1998;395:65–70.

    Vega CA, Fernandez I. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochem Bioenerg 1987;17: 217–22.

    Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, Van Loosdrecht MCM (2006) Mathematical modeling of biofilms. IWA Scientific and Technical Report no. 18, IWA Publishing, UK

    Wen-Wei Li, Guo-Ping Sheng, Xian-Wei Liu, Hang-Qing Yu, Elsevier, Bioresource Technology, Article in press, (2010), doi:10.1016.

    Wilkinson S. “Gastrobots” — benefits and challenges of microbial fuel cells in food powered robot applications. Auton Robot 2000;9:99−111.

    Yingzhi Zeng, Yeng Fung Choo, Byung-Hong Kim, Ping Wu, Modelling and simulation of two-chamber microbial fuel cell, Elsevier, Journal of  Power Sources 195 (2010) 79-89, 2010.

    Yogesh Sharma, Baikun Li, The variation of power generation with organic substrates in single-chamber microbial fuel cells, Elsevier, Bioresource Technology 101 (2010) 1844-1850, 2010.

    Zhang E, XuW, Diao G, Shuang C. Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources 2006;161:820–5.

    Zhang X-C, Halme A (1995) Modeling of a microbial fuel cell process. Biotechnol Lett 17:809–814

    Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 2005;7:1405–10.

    Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 2006:5193–9.

    Zuo Y, Maness PC, Logan BE. Electricity production from steamexploded corn stover biomass. Energ Fuel 2006;20:1716–21.

     

    سایت‌های اطلاع رسانی

     

    165-

    www.microbialfuelcell


موضوع پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, نمونه پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, جستجوی پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, فایل Word پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, دانلود پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, فایل PDF پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, تحقیق در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, مقاله در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, پروژه در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, پروپوزال در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, تز دکترا در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, تحقیقات دانشجویی درباره پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, مقالات دانشجویی درباره پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, پروژه درباره پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, گزارش سمینار در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, پروژه دانشجویی در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, تحقیق دانش آموزی در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, مقاله دانش آموزی در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب, رساله دکترا در مورد پایان نامه مدل سازی ریاضی پیل های سوختی میکروبیولوژیکی با هدف تولید انرژی و تصفیه فاضلاب

پایان‌نامه جهت اخذ درجه کارشناسی ارشد مهندسی شیمی چکیده: زیست فناوری پیل سوختی میکروبی دانشی نوین می‌باشد، که در آن میکروارگانیسم‌ها به عنوان کاتالیستی ارزان، انرژی شیمیایی موجود در ترکیبات آلی و غیر آلی را به انرژی الکتریکی تبدیل می‌کنند. بهینه سازی پارامترهای مؤثر بر عملکرد پیل از اولین گام‌های آزمایشگاهی در جهت توسعه این تکنولوژی در مقیاس کاربردی است. توان تولیدی به عنوان یکی ...

پایان نامه کارشناسی ارشد رشته مهندسی شیمی- بیوتکنولوژی چکیده منابع انرژی رو به زوال سوخت‌های فسیلی، جامعه رو به توسعه انسانی را در آینده‌ای نه‌چندان دور دچار کمبود سوخت می‌سازند. در نتیجه نگرانی­های انتشار پیوسته و در حال افزایش دی­اکسید کربن به اتمسفر و همچنین وسعت آلودگی ناشی از سوخت‌های فسیلی که زندگی در کره خاکی را دچار مشکل ساخته است، نیاز به منابع انرژی از منابع تجدیدپذیر ...

پایان ‌نامه جهت دریافت درجه کارشناسی ارشد در رشته مهندسی برق قدرت چکیده در این پایان نامه یک سیستم ترکیبی تولید توان با استفاده از پیل سوختی/باتری/ابرخازن برای تغذیه یک خودوری برقی سبک با سیستم درایو موتور الکتریکی تحریک مستقل مورد مطالعه و شبیه سازی قرار گرفت. سیستم خودروی برقی از یک سیستم پیش خور و کنترلی، منابع چندگانه، واحد کنترل قدرت و سیستم مدیریت انرژی، ماشین DC تحریک ...

پایان‌نامه کارشناسی ارشد رشته برق قدرت گرایش الکترونیک قدرت چکیده نیروگاه های تولید پراکنده دارای ظرفیت تولیدی از چند کیلو وات تا 10 مگاوات هستند که جهت تولید انرژی الکتریکی در نقاط نزدیک به مصرف کنندگان به کار می روند ازانواع آنها می توان به سلول های خورشیدی ، پیل های سوختی ، میکرو توربین ها ، نیروگاههای بادی و ... اشاره کرد . چنانچه این نیروگاه ها به شبکه متصل شوند ،اثرات ...

پایان ‌نامه جهت دریافت درجه کارشناسی ارشد در رشته مهندسی برق قدرت چکیده در این پایان نامه یک سیستم ترکیبی تولید توان با استفاده از پیل سوختی/باتری/ابرخازن برای تغذیه یک خودوری برقی سبک با سیستم درایو موتور الکتریکی تحریک مستقل مورد مطالعه و شبیه سازی قرار گرفت. سیستم خودروی برقی از یک سیستم پیش خور و کنترلی، منابع چندگانه، واحد کنترل قدرت و سیستم مدیریت انرژی، ماشین DC تحریک ...

پایان نامه دوره کارشناسی ارشد در رشته شیمی گرایش شیمی­فیزیک چکیده در این پروژه ابتدا نانوکاتالیست پلاتین/کربن به وسیله‌ی کاهش شیمیایی نمک پلاتین با کاهنده شیمیایی سدیم بور هیدرید سنتز شد. ویژگی‌های ساختاری و مورفولوژی نانوکاتالیست سنتز شده با استفاده از طیف­سنجی پراکنش انرژی و میکروسکوپ روبش الکترونی مورد بررسی قرار گرفت. فعالیت و پایداری نانوکاتالیست Pt/C در الکترواکسیداسیون ...

جهت اخذ درجه کارشناسی ارشد مهندسی مکانیک- ساخت وتولید چکیده پیل هاى سوختی، دستگاه هاى الکتروشیمیایی هستند که براى تبدیل مستقیم سوخت به انرژی الکتریکی به کار می روند. یکی از مهمترین نوع پیلهای سوختی، پیل سوختی پلیمری است که کاربرد فراوانی دارد. در حالت کلی دو نوع بهینه سازی در پیل سوختی پلیمری میتوان انجام داد : بهینه سازی در طراحی و ساخت بهینه سازی پارامترهای فرآیندی دسته اول که ...

پایان‌نامه برای دریافت درجه کارشناسی ارشد در رشته مهندسی شیمی گرایش ترموسینتیک چکیده با افزایش کاربرد پیل‌ های سوختی در صنعت و به صورت کاربرد در محل، نیاز به توسعه واحدهای تولید در محل هیدروژن وجود دارد. در این تحقیق یک ریفرمر کاتالیستی مونولیتی که در آن فرآیند ریفرمینگ خودگرمازای متان صورت می‌گیرد، بصورت سه بعدی مدل‌سازی می‌شود. کاتالیست مورد استفاده در این مدل‌سازی، 5% ...

پایان نامه برای دریافت درجه کارشناسی ارشد (M.Sc) گرایش : شیمی آلی چکیده تشکیل پیوند کربن-کربن در شیمی آلی از اهمیت بسیاری برخوردار است. یکی از واکنش­هایی که منجر به تشکیل این پیوند می­گردد، واکنش تراکمی نووناگل می­باشد. محصولات این واکنش دارای کاربردهای گسترده­ای از جمله در صنایع دارویی، رنگ، پلیمر و . . . می­باشند. در این پژوهش سعی شده است تا شرایط انجام واکنش نووناگل به نحوی ...

پایان‌نامه کارشناسی ارشد (M.Ss) چکیده تمایل به استفاده از منابع تولیدات پراکنده (DG) به دلیل مزایای متعدد آن‌ها، به طور روزافزونی در حال گسترش است. عدم تناسب میزان بار مصرفی و توان تولیدی موجب خواهد شد که سیستم‌های قدرت در نزدیکی ظرفیت اسمی مربوطه بهره‌برداری گردد که بکارگیری ادوات کنترلی FACTS با هدف به تعویق انداختن نیاز فوری به توسعه‌ی شبکه‌ی فعلی، این مسئله را به طور جدی ...

ثبت سفارش