فهرست:
فصل اول: مقدمه و مفاهیم اولیه. 2
1-1- مقدمه. 2
1-1-1- عوامل موثر در پایداری امولسیونها 4
1-2- تاریخچه جدا کردن آب از نفت خام. 7
1-3- روشهای جداسازی آبنمک از نفت خام. 8
1-3-1- تهنشینی توسط نیروی ثقل.. 8
1-3-2- روش حرارتی.. 9
1-3-3- استفاده از مواد شیمیایی.. 9
1-3-4- شستوشو با آب خالصتر. 10
1-3-5- روشهای مکانیکی.. 10
1-3-5- روش الکتریکی.. 11
1-3-6- استفاده از غشاء 12
1-3-7- استفاده از امواج اولتراسونیک و میکروویو. 12
1-3-8- روش بیولوژیکی.. 13
1-4- شرح فرآیند نمکزدایی الکترواستاتیک.... 13
1-5- امولسیونسازی در شیر اختلاط.. 16
1-5-1- راندمان اختلاط.. 17
1-5-2- آب رقیقکننده 17
1-6- اصول نمکزدایی الکترواستاتیکی.. 19
1-6-1- جریان متناوب... 19
1-6-2- جریان مستقیم.. 21
1-6-3- ترکیب میدانهای متناوب و مستقیم.. 22
1-6-4- فرکانس دوگانه. 24
فصل دوم: مروری بر تحقیقات گذشته. 26
2-1- مطالعات صورت گرفته در زمینه امولسیونسازی.. 26
2-2- مطالعات صورت گرفته در زمینه جداسازی آب از نفت... 28
فصل سوم: مدلسازی.. 33
3-1- معادله موازنه جمعیت... 33
3-2- مدلسازی شیر اختلاط.. 35
3-2-1- تابع شکست... 36
3-2-2- ضریب به هم چسبیدگی.. 38
3-3- آنالیز مسیر حرکت قطره در حضور میدان الکتریکی.. 40
3-3-1- نیروی الکتریکی القایی.. 40
3-3-2- نیروی واندروالس.... 43
3-3-3- توابع حرکت نسبی.. 45
3-3-4- معادله مسیر حرکت... 46
3-4- مدلسازی دستگاه نمکزدای الکترواستاتیک تحت تأثیر میدانهای الکتریکی متناوب افقی و عمودی 47
3-5- خواص فیزیکی آب نمک و نفت خام. 50
3-6- روش حل معادله موازنه جمعیت... 52
فصل چهارم: نتایج و تحلیل دادهها 56
4-1- نتایج حاصل از مدلسازی شیر اختلاط.. 56
4-2- نتایج آنالیز حرکت قطرات در حضور میدان الکتریکی متناوب... 60
4-3- نتایج حاصل از مدلسازی دستگاه الکترواستاتیک.... 62
4-3-1- دستگاه الکترواستاتیک یک مرحلهای میدان افقی.. 64
4-3-2- ارزیابی صحت مدلسازی انجام شده 72
4-3-3- دستگاه الکترواستاتیک دو مرحلهای میدان افقی.. 74
4-3-4- دستگاه الکترواستاتیک میدان عمودی.. 81
فصل پنجم: نتیجهگیری و پیشنهادات... 84
مراجع.. 86
چکیده و صفحه عنوان به انگلیسی
منبع:
[1] A. S. Hamadi and L. H. Mahmood, "Demulsifiers for Simulated Basrah Crude Oil," 28, Eng. and Tech J, 2010.
[2] K. Salam, A. Alade, A. Arinkoola, and A. Opawale, "Improving the demulsification process of heavy crude oil emulsion through blending with diluent," Journal of Petroleum Engineering, vol. 2013, 2013.
[3] F. S. Manning and R. E. Thompson, Oilfield processing volume two: Crude oil vol. 2: Pennwell books, 1995.
[4] پایان نامه کارشناسی ارشد، ویدا میدانشاهی، "مدلسازی به هم پیوستگی الکتریکی در دستگاه نمک زدای الکترواستاتیکی"، دانشگاه شیراز، 1390.
[5] A. Håkansson, C. Trägårdh, and B. Bergenståhl, "Dynamic simulation of emulsion formation in a high pressure homogenizer," Chemical Engineering Science, vol. 64, pp. 2915-2925, 2009.
[6] Desalting, [Online], http://petrowiki.org/Desalting>, [27 March 2015].
[7] G. W. Sams, "Heavy Oil Dehydration," Natco, vol. G. W. Sams, "Heavy Oil Dehydration," Natco, 2009. [Online], < http://www.scribd.com/doc/175388415/Natco-study-on-new-technology-in-desalters#scribd >, [26 March 2015].
[8] E. Sellman, G. W. Sams, and S. P. K. Mandewalkar, "Use of Advanced Electrostatic Fields for Improved Dehydration and Desalting of Heavy Crude Oil and DilBit," presented at the World Heavy Oil Congress [WHOC12], Aberdeen. Scotland, 2012.
[9] Z. Chen, J. Prüss, and H.-J. Warnecke, "A population balance model for disperse systems: drop size distribution in emulsion," Chemical Engineering Science, vol. 53, pp. 1059-1066, 1998.
[10] V. Alopaeus, J. Koskinen, and K. I. Keskinen, "Utilization of population balances in simulation of liquid-liquid systems in mixed tanks," Chemical Engineering Communications, vol. 190, pp. 1468-1484, 2003.
[11] N. B. Raikar, S. R. Bhatia, M. F. Malone, D. J. McClements, C. Almeida-Rivera, P. Bongers, et al., "Prediction of emulsion drop size distributions with population balance equation models of multiple drop breakage," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 361, pp. 96-108, 2010.
[12] F. Azizi and A. Al Taweel, "Turbulently flowing liquid–liquid dispersions. Part I: drop breakage and coalescence," Chemical Engineering Journal, vol. 166, pp. 715-725, 2011.
[13] S. N. Maindarkar, N. B. Raikar, P. Bongers, and M. A. Henson, "Incorporating emulsion drop coalescence into population balance equation models of high pressure homogenization," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 396, pp. 63-73, 2012.
[14] J. F. Mitre, P. L. Lage, M. A. Souza, E. Silva, L. F. Barca, A. O. Moraes, R. C. Coutinho, E. F. Fonseca, "Droplet breakage and coalescence models for the flow of water-in-oil emulsions through a valve-like element," Chemical Engineering Research and Design, vol. 92, pp. 2493-2508, 2014.
[15] M. Manga and H. Stone, "Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions," Journal of Fluid Mechanics, vol. 300, pp. 231-263, 1995.
[16] J. S. Eow and M. Ghadiri, "Drop–drop coalescence in an electric field: the effects of applied electric field and electrode geometry," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 219, pp. 253-279, 2003.
[17] M. Chiesa, "Electrocoalescence modeling: an engineering approach," in 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 2004.
[18] M. Chiesa and J. Melheim, "Behaviour of water droplets falling in oil under the influence of an electric field," Behaviour, vol. 13, p. 17, 2004.
[19] S. Less, A. Hannisdal, E. Bjørklund, and J. Sjöblom, "Electrostatic destabilization of water-in-crude oil emulsions: Application to a real case and evaluation of the Aibel VIEC technology," Fuel, vol. 87, pp. 2572-2581, 2008.
[20] A. E. Bresciani, C. F. Mendonça, R. M. Alves, and C. A. Nascimento, "Modeling the kinetics of the coalescence of water droplets in crude oil emulsions subject to an electric field, with the cellular automata technique," Computers & Chemical Engineering, vol. 34, pp. 1962-1968, 2010.
[21] V. Meidanshahi, A. Jahanmiri, and M. R. Rahimpour, "Modeling and Optimization of Two Stage AC Electrostatic Desalter," Separation Science and Technology, vol. 47, pp. 30-42, 2012.
[22] H. Kiani, S. Moradi, B. S. Soulgani, and S. Mousavian, "Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks."
[23] M. Mohammadi, S. Shahhosseini, and M. Bayat, "Electrocoalescence of binary water droplets falling in oil: Experimental study," Chemical Engineering Research and Design, vol. 92, pp. 2694-2704, 2014.
[24] C. P. Ribeiro and P. L. Lage, "Population balance modeling of bubble size distributions in a direct-contact evaporator using a sparger model," Chemical engineering science, vol. 59, pp. 2363-2377, 2004.
[25] C. Coulaloglou and L. Tavlarides, "Description of interaction processes in agitated liquid-liquid dispersions," Chemical Engineering Science, vol. 32, pp. 1289-1297, 1977.
[26] Y. Liao and D. Lucas, "A literature review on mechanisms and models for the coalescence process of fluid particles," Chemical Engineering Science, vol. 65, pp. 2851-2864, 2010.
[27] G. Supeene, C. R. Koch, and S. Bhattacharjee, "Deformation of a droplet in an electric field: Nonlinear transient response in perfect and leaky dielectric media," Journal of colloid and interface science, vol. 318, pp. 463-476, 2008.
[28] M. H. Davis, "Two charged spherical conductors in a uniform electric field: Forces and field strength," The Quarterly Journal of Mechanics and Applied Mathematics, vol. 17, pp. 499-511, 1964.
[29] H. Hamaker, "The London—van der Waals attraction between spherical particles," physica, vol. 4, pp. 1058-1072, 1937.
[30] X. Zhang, O. A. Basaran, and R. M. Wham, "Theoretical prediction of electric field‐enhanced coalescence of spherical drops," AIChE Journal, vol. 41, pp. 1629-1639, 1995.
[31] X. Zhang and R. H. Davis, "The rate of collisions due to Brownian or gravitational motion of small drops," Journal of Fluid Mechanics, vol. 230, pp. 479-504, 1991.
[32] P. Atten, "On electrocoalescence of water droplets in an insulating liquid," in Industry Applications Society Annual Meeting, 1992., Conference Record of the 1992 IEEE, 1992, pp. 1407-1411.
[33] M. H. Sharqawy, J. H. Lienhard, and S. M. Zubair, "Thermophysical properties of seawater: a review of existing correlations and data," Desalination and Water Treatment, vol. 16, pp. 354-380, 2010.
[34] M. Riazi, Characterization and properties of petroleum fractions vol. 50: ASTM international West Conshohocken, PA, 2005.
[35] H. M. b. M. Sattarina, M. Bayata, M. Teymoria, "New Viscosity Correlations For Dead Crude Oils," Petroleum & Coal, vol. 49 (2), pp. 33-39, 2007.
[36] پایان نامه دکتری، علی بقایی، "تجمیع موازنه جمعیت و دینامیک سیالات محاسباتی جهت شبیهسازی هیدرودینامیک ستون حباب کار"، دانشگاه صنعتی شریف، 1380.
[37] G. H. Yeoh, C. P. Cheung, and J. Tu, Multiphase flow analysis using population balance modeling: Bubbles, drops and particles: Butterworth-Heinemann, 2013.
[38] S. Kumar and D. Ramkrishna, "On the solution of population balance equations by discretization—I. A fixed pivot technique," Chemical Engineering Science, vol. 51, pp. 1311-1332, 1996.