فهرست:
مقدمه............................................................................................................................................................................1
فصل اول- مروری بر مطالعات پیشین................................................................................................................5
1-1- مقدمه...................................................................................................................................................................5
1-2- سوخت زیستی......................................................................................................................................................7
1-2-1- انواع سوختهای زیستی.............................................................................................................................9
1-2-1-1- بیودیزل...........................................................................................................................................9
1-3- پیشینه تولید و استفاده از بیودیزل.....................................................................................................................11
1-4- ریز جلبکها و تولید سوختهای زیستی............................................................................................................12
1-5- تبدیل روغن به بیودیزل......................................................................................................................................18
1-6- تولید توده زیستی ریز جلبک.............................................................................................................................23
1-6-1- استخرها...................................................................................................................................................25
1-6-2- فتوبیورآکتورها..........................................................................................................................................26
1-6-3- مقایسه فتوبیوراکتور لولهای و استخرهای روباز........................................................................................30
1-7- بازیابی توده زیستی ریز جلبک...........................................................................................................................31
1-7-1- روشهای جمع آوری محصول.................................................................................................................32
1-7-1-1- روش لخته سازی و اولترا سونیک..................................................................................................32
1-7-1-2- جمع آوری با استفاده از شناورسازی.............................................................................................34
1-7-1-3- ته نشینی با استفاده از سانتریفوژ و نیروی گرانش.........................................................................34
1-7-1-4- فیلتراسیون توده زیستی................................................................................................................35
1-7-2- استخراج و خالص سازی توده زیستی ریز جلبک.....................................................................................35
1-7-3- استخراج و خالص سازی سوختهای زیستی...........................................................................................36
1-7-4- استخراج و خالص سازی متابولیت های جلبکی.......................................................................................37
1-8- تبدیل روغن استخراج شده از ریز جلبک به بیودیزل..........................................................................................38
1-8-1- روشهای تولید رایج................................................................................................................................38
1-8-2- کاتالیست غیر همگن در واکنش ترنس استریفیکاسیون..........................................................................41
1-9- سابقه علمی تولید بیودیزل از ریز جلبکها........................................................................................................43
1-10- بررسی میزان تولید و استفاده از بیودیزل در جهان.........................................................................................46
1-11- بررسی وضعیت ایران در تولید بیودیزل..........................................................................................................47
1-12- هدف تحقیق..................................................................................................................................................50
فصل دوم- مواد و روش انجام تحقیق.............................................................................................................51
2-1- مقدمه...............................................................................................................................................................51
2-2- انتخاب ریز جلبک.............................................................................................................................................52
2-3- محیط کشت مایع.............................................................................................................................................53
2-4- آزمایش بررسی نور و مواد مغذی.......................................................................................................................54
2-5- منحنی کالیبراسیون وزن خشک سلولی............................................................................................................55
2-6- برداشت ریز جلبک از محیط کشت و خشک کردن آنها.................................................................................57
2-7- استخراج روغن از ریز جلبک خشک.................................................................................................................58
2-8- آنالیز روغن استخراج شده با استفاده از دستگاه کروماتوگرافی گازی................................................................59
2-9- ساخت کاتالیست..............................................................................................................................................61
2-9-1- سنتز کاتالیست گاما آلومینا زیرکونیا.....................................................................................................62
2-9-2- سنتز کاتالیست آلومینا.............................................................................................................................66
2-9-3- سنتز کاتالیست زیرکونیا..........................................................................................................................67
2-10- آنالیز تعیین مشخصات کاتالیست.....................................................................................................................68
2-11- انجام واکنشهای ترنس استریفیکاسیون..........................................................................................................69
2-11-1- بررسی پارامترهای موثر بر فرایند ترنس استریفیکاسیون.......................................................................69
فصل سوم- بررسی و نتایج..............................................................................................................................75
3-1- مقدمه.................................................................................................................................................................75
3-2- بررسی اثر هم زمان شدت نور و میزان نیتروژن..................................................................................................75
3-3- استخراج روغن از ریز جلبک و آنالیز روغن حاصل.............................................................................................80
3-4- تعیین پارامترهای سینیتیک رشد ریز جلبک سندسموس..................................................................................83
3-5- تعیین مشخصات کاتالیستهای سنتز شده........................................................................................................86
3-5-1- آنالیز طیف سنجی تبدیل فوریه مادون قرمز............................................................................................86
3-5-1-1- کاتالیست گاما آلومینا زیرکونیا......................................................................................................86
3-5-1-2- کاتالیست آلومینا...........................................................................................................................87
3-5-1-3- کاتالیست زیرکونیا.........................................................................................................................88
3-5-2- آنالیز طیف سنجی پراش اشعه ایکس......................................................................................................89
3-5-2-1- کاتالیست گاما آلومینا زیرکونیا......................................................................................................89
3-5-2-2- کاتالیست آلومینا...........................................................................................................................93
3-5-2-3- کاتالیست زیرکونیا.........................................................................................................................94
3-5-3- تعیین مساحت سطح و توزیع اندازه ذرات با آنالیز BET و BJH..........................................................94
3-5-4- آنالیز میکروسکوپ الکترونی روبشی کاتالیستهای سنتز شده..............................................................103
3-5-5- آنالیز میکروسکوپ الکترونی عبوری کاتالیستهای سنتز شده..............................................................105
3-6- واکنش ترنس استریفیکاسیون..........................................................................................................................107
3-6-1- فاکتورهای اصلی تأثیر گذار بر بازده تولید بیودیزل...............................................................................108
3-6-1-1- مقدار الکل..................................................................................................................................108
3-6-1-2- مدت زمان واکنش......................................................................................................................110
3-6-1-3- دمای واکنش..............................................................................................................................111
3-6-1-4- مقدار کاتالیست...........................................................................................................................112
3-6-2- واکنش ترنس استریفیکاسیون با روغن جلبک.......................................................................................113
3-6-3- احیا کاتالیستهای سنتز شده...............................................................................................................118
فصل چهارم- نتیجه گیری و پیشنهادات........................................................................................................121
پیوست الف................................................................................................................................................................127
پیوست ب..................................................................................................................................................................137
پیوست ج...................................................................................................................................................................140
مراجع........................................................................................................................................................................145
منبع:
[1] BP, BP statistical review of world energy, (2012). www.bp.com/statisticalreview.
[2] Leung D. Y., Wu X., Leung M., A review on biodiesel production using catalyzed transesterification, Applied Energy 87 (2010) 1083-1095.
[3] Ugarte D. D. L. T., The economic impacts of bioenergy crop production on US agriculture, USDA Agricultural Economic Report No. 816, (2003).
[4] McCarthy J. J., Canziani O. F., Leary N. A., Dokken D. J., White K. S., Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change, (2001), Cambridge University Press.
[5] EIA, International carbon dioxide emissions from the consumption of energy, (2011). www.eia.gov/environment/emissions/carbon.
[6] Bilanovic D., Andargatchew A., Kroeger T., Shelef G., Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–Response surface methodology analysis, Energy Conversion and Management 50 (2009) 262-267.
[7] Wang B., Li Y., Wu N., Lan C., CO2 bio-mitigation using microalgae, Applied Microbiology and Biotechnology 79 (2008) 707-718.
[8] IEA, world energy outlook 2012, (2012). www.iea.org/publications/worldenergyoutlook.
[9] FAO, The state of food and agriculture 2008, Food and Agriculture Organization of the United Nations, (2008). www.fao.org/docrep/011/i0100e/i0100e00.htm.
[10] Larson E. D., Sustainable bioenergy: A framework for decision makers, (2007), UN-Energy.
[11] IEA. technology essentials-biofuel production, International Energy Agency, (2007). https://www.iea.org/publications/.../name,3720,en.html.
[12] Moore A., Biofuels are dead: long live biofuels (?)–Part one, New biotechnology 25 (2008) 6-12.
[13] Gouveia L., Oliveira A. C., Microalgae as a raw material for biofuels production, Journal of industrial microbiology & biotechnology 36 (2009) 269-274.
[14] Hoogwijk M., Faaij A., van den Broek R., Berndes G. r., Gielen D., Turkenburg W., Exploration of the ranges of the global potential of biomass for energy, Biomass and Bioenergy 25 (2003) 119-133.
[15] Demirbas A., Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science 30 (2004) 219-230.
[16] Timilsina G. R., Shrestha A., How much hope should we have for biofuels?, Energy 36 (2011) 2055-2069.
[17] Amin S., Review on biofuel oil and gas production processes from microalgae, Energy Conversion and Management 50 (2009) 1834-1840.
[18] Cerro-Alarcَn M., Corma A., Iborra S., Gَmez J. P., Biomass to fuels: A water-free process for biodiesel production with phosphazene catalysts, Applied Catalysis A: General 346 (2008) 52-57.
[19] Kim S., Dale B. E., Global potential bioethanol production from wasted crops and crop residues, Biomass and Bioenergy 26 (2004) 361-375.
[20] Visser E. M., Filho D. O., Martins M. A., Steward B. L., Bioethanol production potential from Brazilian biodiesel co-products, Biomass and Bioenergy In Press, Corrected Proof (2010).
[21] Atadashi I. M., Aroua M. K., Aziz A. A., High quality biodiesel and its diesel engine application: A review, Renewable and Sustainable Energy Reviews 14 (2010) 1999-2008.
[22] Taheripour F., Hertel T. W., Tyner W. E., Beckman J. F., Birur D. K., Biofuels and their by-products: Global economic and environmental implications, Biomass and Bioenergy 34 (2010) 278-289.
[23] Pinto A. C., Guarieiro L. L. N., Rezende M. J. C., Ribeiro N. b. M., Torres E. A., Lopes W. A., Pereira P. A. d. P., Andrade J. B. d., Biodiesel: an overview, Journal of the Brazilian Chemical Society 16 (2005) 1313-1330.
[24] Jain S., Sharma M. P., Prospects of biodiesel from Jatropha in India: A review, Renewable and Sustainable Energy Reviews 14 (2010) 763-771.
[25] Janaun J., Ellis N., Perspectives on biodiesel as a sustainable fuel, Renewable and Sustainable Energy Reviews 14 (2010) 1312-1320.
[26] Fazal M. A., Haseeb A. S. M. A., Masjuki H. H., Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability, Renewable and Sustainable Energy Reviews In Press, Corrected Proof (2010).
[27] Balat M., Balat H., A critical review of bio-diesel as a vehicular fuel, Energy Conversion and Management 49 (2008) 2727-2741.
[28] Al-Widyan M. I., Tashtoush G., Abu-Qudais M. d., Utilization of ethyl ester of waste vegetable oils as fuel in diesel engines, Fuel Processing Technology 76 (2002) 91-103.
[29] Lapuerta M., Armas O., Rodriguez-Fernandez J., Effect of biodiesel fuels on diesel engine emissions, Progress in Energy and Combustion Science 34 (2008) 198-223.
[30] Gerpen J. V., Biodiesel processing and production, Fuel Processing Technology 86 (2005) 1097-1107.
[31] Zhang Y., Dubé M. A., McLean D. D., Kates M., Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresource Technology 89 (2003) 1-16.
[32] Ma F., Hanna M. A., Biodiesel production: a review, Bioresource Technology 70 (1999) 1-15.
[33] Cadenas A., Cabezudo S., Biofuels as Sustainable Technologies: Perspectives for Less Developed Countries, Technological Forecasting and Social Change 58 (1998) 83-103.
[34] Falkowski P. G., Raven J. A., Aquatic photosynthesis, (1997), Blackwell Science Malden, MA.
[35] Lee R. E., Phycology, (2008), Cambridge University Press.
[36] Khan S. A., Hussain M. Z., Prasad S., Banerjee U., Prospects of biodiesel production from microalgae in India, Renewable and Sustainable Energy Reviews 13 (2009) 2361-2372.
[37] John R. P., Anisha G., Nampoothiri K. M., Pandey A., Micro and macroalgal biomass: a renewable source for bioethanol, Bioresource Technology 102 (2011) 186-193.
[38] Chisti Y., Biodiesel from microalgae, Biotechnology Advances 25 (2007) 294-306.
[39] Schenk P., Thomas-Hall S., Stephens E., Marx U., Mussgnug J., Posten C., Kruse O., Hankamer B., Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production, BioEnergy Research 1 (2008) 20-43.
[40] Clarens A. F., Resurreccion E. P., White M. A., Colosi L. M., Environmental life cycle comparison of algae to other bioenergy feedstocks, Environmental Science & Technology 44 (2010) 1813-1819.
[41] Miao X., Wu Q., Yang C., Fast pyrolysis of microalgae to produce renewable fuels, Journal of analytical and applied pyrolysis 71 (2004) 855-863.
[42] Pulz O., Gross W., Valuable products from biotechnology of microalgae, Applied Microbiology and Biotechnology 65 (2004) 635-648.
[43] Pienkos P. T., Darzins A., The promise and challenges of microalgal-derived biofuels, Biofuels, Bioproducts and Biorefining 3 (2009) 431-440.
[44] Campbell C. J., Laherrère J. H., The end of cheap oil, Scientific American 278 (1998) 60-65.
[45] Huntley M., Redalje D., CO2 mitigation and renewable oil from photosynthetic microbes: A New Appraisal, Mitigation and Adaptation Strategies for Global Change 12 (2007) 573-608.
[46]Li Y., Horsman M., Wu N., Lan C. Q., Dubois-Calero N., Biofuels from Microalgae, Bi otechnology Progress 24 (2008) 815-820.
[47] Rodolfi L., Chini Zittelli G., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M. R., Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnology and Bioengineering 102 (2009) 100-112.
[48] Hankamer B., Lehr F., Rupprecht J., Mussgnug J. H., Posten C., Kruse O., Photosynthetic biomass and H2 production by green algae: from bioengineering to bioreactor scale‐up, Physiologia Plantarum 131 (2007) 10-21.
[49] Costa J. A. V., De Morais M. G., The role of biochemical engineering in the production of biofuels from microalgae, Bioresource Technology 102 (2011) 2-9.
[50] Gouveia L., Microalgae as a feedstock for biofuels, (2011), Springer.
[51] Chisti Y., Biodiesel from microalgae beats bioethanol, Trends in Biotechnology 26 (2008) 126-131.
[52] Chisti Y., Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants, Trends in Biotechnology 26 (2008).
[53] USDA, US Department of Agriculture, (2007). http://www.usda.gov.
[54] Al-Widyan M. I., Al-Shyoukh A. O., Experimental evaluation of the transesterification of waste palm oil into biodiesel, Bioresource Technology 85 (2002) 253-256.
[55] Sanchez F., Vasudevan P. T., Enzyme catalyzed production of biodiesel from olive oil, Applied Biochemistry and Biotechnology 135 (2006) 1-14.
[56] Patil V., Tran K.-Q., Giselrod H. R., Towards sustainable production of biofuels from microalgae, International journal of molecular sciences 9 (2008) 1188-1195.
[57] Hu D., Liu H., Yang C., Hu E., The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control, Acta Astronautica 63 (2008) 1067-1075.
[58] Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, The Plant Journal 54 (2008) 621-639.
[59] Tickell J., Tickell K., From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel, (2003), Greenteach Pub.
[60] Mata T. M., Martins A. n. A., Caetano N. S., Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews 14 (2010) 217-232.
[61] Xu H., Miao X., Wu Q., High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, Journal of Biotechnology 126 (2006) 499-507.
[62] Miao X., Wu Q., Biodiesel production from heterotrophic microalgal oil, Bioresource Technology 97 (2006) 841-846.
[63] da Silva T. L., Reis A., Medeiros R., Oliveira A. C., Gouveia L., Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry, Applied Biochemistry and Biotechnology 159 (2009) 568-578.
[64] Morowvat M. H., Rasoul-Amini S., Ghasemi Y., Chlamydomonas as a “new” organism for biodiesel production, Bioresource Technology 101 (2010) 2059-2062.
[65] Lynch D. V., Thompson G. A., Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina, Plant physiology 69 (1982) 1369-1375.
[66] Brown M. R., Dunstan G. A., Norwood S., Miller K. A., Effects of harvest stage and light on the biochemical composition of the diatom thalassiosira pseudonana, Journal of Phycology 32 (1996) 64-73.
[67] Khotimchenko S. V., Yakovleva I. M., Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance, Phytochemistry 66 (2005) 73-79.
[68] Sukenik A., Yamaguchi Y., Livne A., Alternation in lipid molecular species of the marine eustigma tophyte nanochloropsis sp., Journal of Phycology 29 (1993) 620-626.
[69] Liang Y., Beardall J., Heraud P., Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae), Journal of Photochemistry and Photobiology B: Biology 82 (2006) 161-172.
[70] Shen Y., Pei Z., Yuan W., Mao E., Effect of nitrogen and extraction method on algae lipid yield, International Journal of Agricultural and Biological Engineering 2 (2009) 51-57.
[71] Demirbas A., Political, economic and environmental impacts of biofuels: A review, Applied Energy 86 (2009) S108-S117.
[72] Molina E., Fernandez J., Acién F. G., Chisti Y., Tubular photobioreactor design for algal cultures, Journal of Biotechnology 92 (2001) 113-131.
[73] Mirَn A. S., Garcia M. C. C. n., Gَmez A. C., Camacho F. G., Grima E. M., Chisti Y., Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors, Biochemical Engineering Journal 16 (2003) 287-297.
[74] Yun Y. S., Lee S. B., Park J. M., Lee C. I., Yang J. W., Carbon-Dioxide Fixation by Algal Cultivation Using Waste-Water Nutrients, Journal of Chemical Technology and Biotechnology 69 (1997) 451-455.
[75] Molina Grima E., Fernandez F. G. A., Garcia Camacho F., Chisti Y., Photobioreactors: light regime, mass transfer, and scaleup, Journal of Biotechnology 70 (1999) 231-247.
[76] Terry K. L., Raymond L. P., System design for the autotrophic production of microalgae, Enzyme and Microbial Technology 7 (1985) 474-487.
[77] Sanchez Mirَn A., Contreras Gَmez A., Garcia Camacho F., Molina Grima E., Chisti Y., Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae, Journal of Biotechnology 70 (1999) 249-270.
[78] Spolaore P., Joannis-Cassan C., Duran E., Isambert A., Commercial applications of microalgae, Journal of Bioscience and Bioengineering 101 (2006) 87-96.
[79] Pulz, Photobioreactors: production systems for phototrophic microorganisms, Applied Microbiology and Biotechnology 57 (2001) 287-293.
[80] Sobczuk T., Camacho F., Grima E., Chisti Y., Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum, Bioprocess and Biosystems Engineering 28 (2006) 243-250.
[81] Acién Fernandez F. G., Fernandez Sevilla J. M., Sanchez Pérez J. A., Molina Grima E., Chisti Y., Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance, Chemical Engineering Science 56 (2001) 2721-2732.
[82] Chisti Y., Moo-Young M., Clean-in-place systems for industrial bioreactors: Design, validation and operation, Journal of Industrial Microbiology & Biotechnology 13 (1994) 201-207.
[83] Chisti Y., Pneumatically Agitated Bioreactors in Industrial and Environmental Bioprocessing: Hydrodynamics, Hydraulics, and Transport Phenomena, Applied Mechanics Reviews 51 (1998) 33-112.
[84] Rubio F. C., Fernández F. G. A., Pérez J. A. S., Camacho F. G., Grima E. M., Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture, Biotechnology and Bioengineering 62 (1999) 71-86.
[85] Lorenz R. T., Cysewski G. R., Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends in Biotechnology 18 (2000) 160-167.
[86] Molina Grima E., Belarbi E. H., Acién Fernandez F. G., Robles Medina A., Chisti Y., Recovery of microalgal biomass and metabolites: process options and economics, Biotechnology Advances 20 (2003) 491-515.
[87] de la Noue J., de Pauw N., The potential of microalgal biotechnology: A review of production and uses of microalgae, Biotechnology Advances 6 (1988) 725-770.
[88] Olaizola M., Commercial development of microalgal biotechnology: from the test tube to the marketplace, Biomolecular Engineering 20 (2003) 459-466.
[89] Knuckey R. M., Brown M. R., Robert R., Frampton D. M. F., Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds, Aquacultural Engineering 35 (2006) 300-313.
[90] Divakaran R., Sivasankara Pillai V. N., Flocculation of algae using chitosan, Journal of Applied Phycology 14 (2002) 419-422.
[91] Bosma R., van Spronsen W. A., Tramper J., Wijffels R. H., Ultrasound, a new separation technique to harvest microalgae, Journal of Applied Phycology 15 (2003) 143-153.
[92] Nurdogan Y., Oswald W., Tube settling of high-rate pond algae, Water Science and Technology 33 (1996) 229-241.
[93] Muٌoz R., Guieysse B., Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Research 40 (2006) 2799-2815.
[94] Heasman M., Diemar J., O'Connor W., Sushames T., Foulkes L., Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary, Aquaculture Research 31 (2000) 637-659.
[95] Pauw N., Morales J., Persoone G., Mass culture of microalgae in aquaculture systems: Progress and constraints, Hydrobiologia 116-117 (1984) 121-134.
[96] Sim T. S., Goh A., Becker E. W., Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae, Biomass 16 (1988) 51-62.
[97] Prakash J., Pushparaj B., Carlozzi P., Torzillo G., Montaini E., Materassi R., Microalgal biomass drying by a simple solar device, International Journal of Solar Energy 18 (1997) 303 - 311.
[98] Desmorieux H., Decaen N., Convective drying of spirulina in thin layer, Journal of Food Engineering 66 (2005) 497-503.
[99] Grima E., Medina A., Giménez A., Sánchez Pérez J., Camacho F., García Sánchez J., Comparison between extraction of lipids and fatty acids from microalgal biomass, Journal of the American Oil Chemists' Society 71 (1994) 955-959.
[100] Leach G., Oliveira G., Morais R., Spray-drying of Dunaliella salina to produce a β-carotene rich powder, Journal of Industrial Microbiology & Biotechnology 20 (1998) 82-85.
[101] Widjaja A., Chien C.-C., Ju Y.-H., Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, Journal of the Taiwan Institute of Chemical Engineers 40 (2009) 13-20.
[102] Sialve B., Bernet N., Bernard O., Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances 27 (2009) 409-416.
[103] Mendes-Pinto M. M., Raposo M. F. J., Bowen J., Young A. J., Morais R., Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability, Journal of Applied Phycology 13 (2001) 19-24.
[104] Hejazi M. A., Wijffels R. H., Milking of microalgae, Trends in Biotechnology 22 (2004) 189-194.
[105] Bozbas K., Biodiesel as an alternative motor fuel: Production and policies in the European Union, Renewable and Sustainable Energy Reviews 12 (2008) 542-552.
[106] Demirbas A., Comparison of transesterification methods for production of biodiesel from vegetable oils and fats, Energy Conversion and Management 49 (2008) 125-130.
[107] Marchetti J. M., Miguel V. U., Errazu A. F., Possible methods for biodiesel production, Renewable and Sustainable Energy Reviews 11 (2007) 1300-1311.
[108] Demirbas A., Biodiesel from sunflower oil in supercritical methanol with calcium oxide, Energy Conversion and Management 48 (2007) 937-941.
[109] Nagle N., Lemke P., Production of methyl ester fuel from microalgae, Applied Biochemistry and Biotechnology 24-25 (1990) 355-361.
[110] Belarbi E. H., Molina E., Chisti Y., A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil, Enzyme and Microbial Technology 26 (2000) 516-529.
[111] Arzamendi G., Campo I., Arguiٌarena E., Sanchez M., Montes M., Gandia L. M., Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH, Chemical Engineering Journal 134 (2007) 123-130.
[112] Sharma Y. C., Singh B., Upadhyay S. N., Advancements in development and characterization of biodiesel: A review, Fuel 87 (2008) 2355-2373.
[113] Xie W., Peng H., Chen L., Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst, Applied Catalysis A: General 300 (2006) 67-74.
[114] Kim H.-J., Kang B.-S., Kim M.-J., Park Y. M., Kim D.-K., Lee J.-S., Lee K.-Y., Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst, Catalysis Today 93-95 (2004) 315-320.
[115] Ferreira D. A. C., Meneghetti M. R., Meneghetti S. M. P., Wolf C. R., Methanolysis of soybean oil in the presence of tin(IV) complexes, Applied Catalysis A: General 317 (2007) 58-61.
[116] Xie W., Li H., Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil, Journal of Molecular Catalysis A: Chemical 255 (2006) 1-9.
[117] Suppes G. J., Dasari M. A., Doskocil E. J., Mankidy P. J., Goff M. J., Transesterification of soybean oil with zeolite and metal catalysts, Applied Catalysis A: General 257 (2004) 213-223.
[118] Shibasaki-Kitakawa N., Honda H., Kuribayashi H., Toda T., Fukumura T., Yonemoto T., Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst, Bioresource Technology 98 (2007) 416-421.
[119] Shieh C. J., Liao H. F., Lee C. C., Optimization of lipase-catalyzed biodiesel by response surface methodology, Bioresource Technology 88 (2003) 103-106.
[120] Ranganathan S. V., Narasimhan S. L., Muthukumar K., An overview of enzymatic production of biodiesel, Bioresource Technology 99 (2008) 3975-3981.
[121] Yan S., Lu H., Liang B., Supported CaO Catalysts Used in the Transesterification of Rapeseed Oil for the Purpose of Biodiesel Production, Energy & Fuels 22 (2007) 646-651.
[122] Liu X., Piao X., Wang Y., Zhu S., He H., Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol, Fuel 87 (2008) 1076-1082.
[123] Kawashima A., Matsubara K., Honda K., Development of heterogeneous base catalysts for biodiesel production, Bioresource Technology 99 (2008) 3439-3443.
[124] Park Y.-M., Lee J. Y., Chung S.-H., Park I. S., Lee S.-Y., Kim D.-K., Lee J.-S., Lee K.-Y., Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel, Bioresource Technology 101 (2010) S59-S61.
[125] Kansedo J., Lee K. T., Bhatia S., Biodiesel production from palm oil via heterogeneous transesterification, Biomass and Bioenergy 33 (2009) 271-276.
[126] Chen L., Liu T., Zhang W., Chen X., Wang J., Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion, Bioresource Technology 111 (2012) 208-214.
[127] Mandal S., Mallick N., Microalga Scenedesmus obliquus as a potential source for biodiesel production, Applied Microbiology and Biotechnology 84 (2009) 281-291.
[128] Krohn B. J., McNeff C. V., Yan B., Nowlan D., Production of algae-based biodiesel using the continuous catalytic Mcgyan® process, Bioresource Technology 102 (2011) 94-100.
[129] Umdu E. S., Tuncer M., Seker E., Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts, Bioresource Technology 100 (2009) 2828-2831.
[130] Carrero A., Vicente G., Rodríguez R., Linares M., Del Peso G., Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil, Catalysis Today 167 (2011) 148-153.
[131] Gopinathan C., Differential growth rates of micro-algae in various culture media, Indian Journal of Fisheries 33 (2011) 450-456.
[132] Xin L., Hong-ying H., Yu-ping Z., Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature, Bioresource technology 102 (2011) 3098-3102.
[133] Jeon H.-J., Yi S.-C., Oh S.-G., Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method, Biomaterials 24 (2003) 4921-4928.
[134] Ward D. A., Ko E. I., Preparing catalytic materials by the sol-gel method, Industrial & Engineering Chemistry Research 34 (1995) 421-433.
[135] Sarkar D., Mohapatra D., Ray S., Bhattacharyya S., Adak S., Mitra N., Synthesis and characterization of sol–gel derived ZrO2 doped Al2O3 nanopowder, Ceramics international 33 (2007) 1275-1282.
[136] Mahshid S., Ghamsari M. S., Askari M., Afshar N., Lahuti S., Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Semicond Phys Quantum Electron Optoelectron 9 (2006) 65-68.
[137] Chandradass J., Yoon J. H., Bae D.-s., Synthesis and characterization of zirconia doped alumina nanopowder by citrate–nitrate process, Materials Science and Engineering: A 473 (2008) 360-364.
[138] Kim J., Lin Y., Sol-gel synthesis and characterization of yttria stabilized zirconia membranes, Journal of membrane science 139 (1998) 75-83.
[139] Hao Y., Li J., Yang X., Wang X., Lu L., Preparation of ZrO2–Al2O3 composite membranes by sol–gel process and their characterization, Materials Science and Engineering: A 367 (2004) 243-247.
[140] Marchetti J., Errazu A., Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides, Biomass and Bioenergy 32 (2008) 892-895.
[141] Meher L. C., Vidya Sagar D., Naik S. N., Technical aspects of biodiesel production by transesterification--a review, Renewable and Sustainable Energy Reviews 10 (2006) 248-268.
[142] Tomasevic A., Siler-Marinkovic S., Methanolysis of used frying oil, Fuel Processing Technology 81 (2003) 1-6.
[143] Utlu Z., Koçak M. S., The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions, Renewable Energy 33 (2008) 1936-1941.
[144] Jomtib N., Prommuak C., Goto M., Sasaki M., Shotipruk A., Effect of co-solvents on transesterification of refined palm oil in supercritical methanol, Engineering Journal 15 (2011) 49-58.
[145] Escobar E., Demafelis R., Pham L., Florece L., Borines M., Biodiesel production from Jatropha curcas L. oil by transesterification with hexane as cosolvent, Philippine Journal of Crop Science 33 (2008) 1-13.
[146] Phan A. N., Phan T. M., Biodiesel production from waste cooking oils, Fuel 87 (2008) 3490-3496.
[147] Glover H. E., Keller M. D., Spinrad R. W., The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones, Journal of experimental marine biology and ecology 105 (1987) 137-159.
[148] Samorì G., Samorì C., Guerrini F., Pistocchi R., Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment (Part I), Water Research (2012).
[149] Ugwu C., Aoyagi H., Uchiyama H., Photobioreactors for mass cultivation of algae, Bioresource Technology 99 (2008) 4021-4028.
[150] Cade-Menun B. J., Paytan A., Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae, Marine Chemistry 121 (2010) 27-36.
[151] Pal D., Khozin-Goldberg I., Cohen Z., Boussiba S., The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp, Applied microbiology and biotechnology (2011) 1-13.
[152] Yang C., Hua Q., Shimizu K., Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions, Biochemical Engineering Journal 6 (2000) 87-102.
[153] Lin Q., Lin J., Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga, Bioresource technology 102 (2011) 1615-1621.
[154] Xin L., Hong-Ying H., Ke G., Ying-Xue S., Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Bioresource technology 101 (2010) 5494-5500.
[155] Fang J.-Y., Chiu H.-C., Wu J.-T., Chiang Y.-R., Hsu S.-H., Fatty acids in Botryococcus braunii accelerate topical delivery of flurbiprofen into and across skin, International journal of pharmaceutics 276 (2004) 163-173.
[156] Knothe G., Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel processing technology 86 (2005) 1059-1070.
[157] Lin Y.-H., Chang F.-L., Tsao C.-Y., Leu J.-Y., Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor, Biochemical Engineering Journal 37 (2007) 166-176.
[158] Ben-Amotz A., Tornabene T. G., Thomas W. H., Chemical profile of selected species of microalgae with emphasis on lipids, Journal of Phycology 21 (1985) 72-81.
[159] Lee J.-Y., Yoo C., Jun S.-Y., Ahn C.-Y., Oh H.-M., Comparison of several methods for effective lipid extraction from microalgae, Bioresource technology 101 (2010) S75-S77.
[160] Venkatesh R., Ramanan S. R., Effect of organic additives on the properties of sol-gel spun alumina fibres, Journal of the European Ceramic Society 20 (2000) 2543-2549.
[161] Chandradass J., Balasubramanian M., Sol–gel processing of alumina–zirconia minispheres, Ceramics International 31 (2005) 743-748.
[162] Taavoni-Gilan A., Taheri-Nassaj E., Akhondi H., The effect of zirconia content on properties of Al2O3-ZrO2 (Y2O3) composite nanopowders synthesized by aqueous sol-gel method, Journal of Non-Crystalline Solids 355 (2009) 311-316.
[163] Balmer M. L., Lange F. F., Levi C. G., Metastable phase selection and partitioning for Zr (1− x) AlxO (2− x/2) materials synthesized with liquid precursors, Journal of the American Ceramic Society 77 (1994) 2069-2075.
[164] Klein L., Sol-gel processing of silicates, Annual Review of Materials Science 15 (1985) 227-248.
[165] Moran-Pineda M., Castillo S., López T., Gómez R., Novaro O., Synthesis, characterization and catalytic activity in the reduction of NO by CO on alumina–zirconia sol–gel derived mixed oxides, Applied Catalysis B: Environmental 21 (1999) 79-88.
[166] Vazquez A., Lopez T., Gomez R., Morales A., Novaro O., X-ray diffraction, FTIR, and NMR characterization of sol–gel alumina doped with lanthanum and cerium, Journal of Solid State Chemistry 128 (1997) 161-168.
[167] Low I., McPherson R., Crystallization of gel-derived alumina and alumina-zirconia ceramics, Journal of Materials Science 24 (1989) 892-898.