فهرست:
فصل1 1
مقدمه 1
1-1. مقدمه. 2
1-2. تعریف آنزیم.. 2
1-3. تاریخچه آنزیم.. 2
1-4. ساختار آنزیم.. 4
1-5. تقسیمبندی آنزیمها 5
1-6. تاریخچه آنزیم پروتئاز 6
1-7. عملکرد پروتئازها 6
1-8. تخمیرحالت جامد. 7
1-9. ضرورت انجام پروژه. 8
1-10. اهداف این پروژه. 8
فصل2 مروری بر منابع مطالعاتی 10
2-1. مقدمه. 11
2-2. پروتئازها 11
2-3. منابع پروتئازها 12
2-3-1. پروتئازهای گیاهی.. 12
2-3-2. پروتئازهای حیوانی.. 13
2-3-3. پروتئازهای میکروبی.. 13
2-4. تقسیم بندی پروتئازها 16
2-5. پروتئازهای قلیایی.. 19
2-6. مکانیزم عمل پروتئازها 22
2-7. کاربردهای صنعتی آنزیم پروتئاز 22
2-7-1. صنعت مواد شوینده. 23
2-7-2. صنایع غذایی.. 24
2-7-3. صنعت چرم. 25
2-7-4. صنعت عکاسی.. 26
2-7-5. صنایع دارویی.. 26
2-7-6. مدیریت محیط زیست... 27
2-8. تولید آنزیم پروتئاز 27
2-9. تخمیر حالت غوطه ور 28
2-9-1. تخمیر حالت جامد. 29
2-9-2. مقایسه سیستمهای تخمیر جامد و غوطهور 29
2-9-3. انتقال جرم در تخمیر حالت جامد. 30
2-9-4. عملیات انتقال جرم در مقیاس ماکرو. 31
2-9-5. عملیات انتقال جرم در مقیاس میکرو. 32
2-9-6. انتقال اکسیژن.. 32
2-9-7. نفوذ آنزیمها 33
2-9-8. جنبههای انتقال حرارت... 34
2-9-9. میکروارگانیزمهای مورد استفاده در تخمیر حالت جامد. 35
2-9-10. کاربردهای تخمیر حالت جامد. 37
2-9-11. آنزیمهای بدست آمده از فرآیند تخمیر جامد. 38
2-10. طراحی بیوراکتور 39
2-11. انواع بیوراکتورهای مورد استفاده در تخمیر حالت جامد. 40
2-11-1. بیوراکتورهای سینیدار 41
2-11-2. بیوراکتورهای بسترپرشده 42
2-11-3. بیوراکتورهای استوانه ایدوار 43
2-11-4. بیوراکتورهای بسترسیال.. 45
2-12. مراحل عمومی برای انجام فرآیند SSF در داخل بیوراکتور 46
2-13. عوامل مؤثر در تولید پروتئاز در فرآیند SSF در داخل بیوارکتور 47
فصل3 مواد و روشها 48
3-1. مقدمه. 49
3-2. تجهیزات مورد استفاده. 49
3-3. تعیین مشخصات سوبسترا 50
3-3-1. محاسبه میزان خاکستر. 50
3-3-2. محاسبه میزان رطوبت... 51
3-3-3. محاسبه میزان قند موجود در سوبسترا 51
3-3-4. محاسبه میزان پروتئین.. 52
3-3-5. تعیین درصد مواد استخراجی.. 54
3-3-6. تعیین درصد سلولز. 54
3-3-7. تعیین درصد لیگنین.. 55
3-3-8. تعیین درصد همیسلولز. 55
3-3-9. محاسبه اندازه ذرات سوبسترا 55
3-4. میکروارگانیسم و محیط کشت... 56
3-4-1. انتخاب میکروارگانیسم.. 56
3-4-2. مشخصات میکروارگانیسم.. 57
3-4-3. محیط کشت... 57
3-4-4. تهیه مایه تلقیح.. 59
3-4-5. منحنی رشد باکتری... 60
3-4-6. تعیین pH بهینه باکتری... 60
3-5. تخمیر حالت جامد. 61
3-6. نمونهگیری و استخراج آنزیم از سوبسترای تخمیریافته. 63
3-7. فعالیت پروتئاز 64
3-7-1. منحنی استاندارد تیروزین.. 65
3-8. بررسی تأثیر پارامترهای مختلف بر روی تولید آنزیم پروتئاز در بیوراکتور سینیدار 66
3-8-1. تأثیر نوع سوبسترای جامد. 66
3-8-2. تأثیر مدت زمان تخمیر. 67
3-8-3. اثر دما 67
3-8-4. تأثیر pH... 67
3-8-5. اثر پارامترهای مختلف بر روی استخراج آنزیم.. 68
3-8-6. تأثیر رطوبت اولیه سوبسترا 68
3-8-7. تأثیر رطوبت داخلی راکتور 68
3-8-8. تأثیر اندازه ذرات... 68
3-8-9. تأثیر میزان تلقیح.. 69
3-8-10. تأثیر غنیسازی سوبسترا با منابع کربنی و نیتروژنی.. 69
3-8-11. تأثیر pH بر فعالیت و پایداری آنزیم تولیدی... 69
3-8-12. تأثیر دما بر فعالیت و پایداری آنزیم تولیدی... 70
3-9. کاربردهای آنزیم تولیدی... 71
3-9-1. افزودنی به مواد شوینده. 71
3-9-2. پردازش چرم. 71
3-9-3. هیدرولیز لایه ژلاتینی فیلمهای عکاسی و آزاد سازی نقره. 72
3-10. مقایسه تولید آنزیم پروتئاز در بیوراکتور و فلاسک.... 72
فصل4 نتایج و تفسیر آنها 73
4-1. مقدمه. 74
4-2. محاسبه خصوصیات سبوس گندم. 74
4-3. منحنی رشد باکتری... 75
4-4. pH بهینه رشد باکتری... 75
4-5. بررسی پارامترهای مختلف بر تولید پروتئاز 76
4-5-1. تأثیر مدت زمان تخمیر. 76
4-5-2. بررسی تأثیر نوع سوبسترای جامد. 78
4-5-3. بررسی پارامترهای مؤثر بر استخراج پروتئاز 79
4-5-4. تأثیر pH ابتدایی.. 82
4-5-5. بررسی دمای داخل بیوراکتور 82
4-5-6. تأثیر رطوبت ابتدایی سوبسترا 84
4-5-7. تأثیر رطوبت داخلی بیوراکتور 85
4-5-8. تأثیر اندازه ذرات... 86
4-5-9. تاثیر میزان مایه تلقیح.. 87
4-5-10. بررسی تأثیر غنی سازی سوبسترا با منابع کربنی و نیتروژنی.. 87
4-6. بهینه سازی شرایط فعالیت پروتئازی آنزیم.. 92
4-6-1. تعیین pH بهینه فعالیت آنزیم.. 92
4-6-2. تعیین دمای بهینه فعالیت آنزیم.. 94
4-6-3. تعیین pH پایداری آنزیم.. 95
4-6-4. تعیین دمای بهینه پایداری آنزیم.. 96
4-7. کاربردهای آنزیم پروتئاز قلیایی حاصل از B.licheniformis. 97
4-7-1. عملکرد پروتئاز قلیایی به عنوان افزدونی به شوینده. 97
4-7-2. موزدایی از پوست... 98
4-7-3. هیدرولیز لایه ژلاتینی فیلمهای X-Ray. 99
4-8. مقایسه تولید آنزیم پروتئاز در بیوراکتور و فلاسک.... 100
فصل5 نتیجهگیری و پیشنهادها 103
5-1. نتیجهگیری... 104
5-2. پیشنهادها 106
منبع:
1. Dutta, R., Fundamentals of biochemical engineering. Fundamentals of Biochemical Engineering:, ISBN 978-3-540-77900-1. Springer-Verlag Berlin Heidelberg, 2008, 2008. 1.
2. Najafpour, G., Biochemical engineering and biotechnology. 2006: Elsevier.
3. Carrea, G., G. Ottolina, and S. Riva, Role of solvents in the control of enzyme selectivity in organic media. Trends in Biotechnology, 1995. 13(2): p. 63-70.
4. Briggs, G.E. and J.B.S. Haldane, A note on the kinetics of enzyme action. Biochemical journal, 1925. 19(2): p. 338.
5. Kumar, C.G. and H. Takagi, Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology advances, 1999. 17(7): p. 561-594.
6. Genckal, H., Studies on Alkaline Protease Production from Bacillus sp. 2004, İzmir Institute of Technology.
7. Bothe, H., O. Schmitz, M.G. Yates, and W.E. Newton, Nitrogenases and hydrogenases in cyanobacteria, in Bioenergetic Processes of Cyanobacteria. 2011, Springer. p. 137-157.
8. Flannery, E.L., L. Mody, and H.L. Mobley, Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infection and immunity, 2009. 77(11): p. 4887-4894.
9. McDonald, A.G. and K.F. Tipton, Fifty‐five years of enzyme classification: advances and difficulties. FEBS Journal, 2014. 281(2): p. 583-592.
10. Ward, O., M. Rao, and A. Kulkarni, Proteases, Production. Applied Microbiology: Industrial, 2009: p. 495-511.
11. Laxman, R.S., A.P. Sonawane, S.V. More, B.S. Rao, M.V. Rele, V.V. Jogdand, V.V. Deshpande, and M.B. Rao, Optimization and scale up of production of alkaline protease from Conidiobolus coronatus. Process Biochemistry, 2005. 40(9): p. 3152-3158.
12. Chauhan, B. and R. Gupta, Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochemistry, 2004. 39(12): p. 2115-2122.
13. Maurer, K.-H., Detergent proteases. Current opinion in Biotechnology, 2004. 15(4): p. 330-334.
14. Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito, Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. Journal of bioscience and bioengineering, 2007. 103(6): p. 501-508.
15. Sookkheo, B., S. Sinchaikul, S. Phutrakul, and S.-T. Chen, Purification and Characterization of the Highly Thermostable Proteases from Bacillus stearothermophilus TLS33. Protein Expression and Purification, 2000. 20(2): p. 142-151.
16. Joo, H.S., C. Kumar, G.C. Park, S. Paik, and C.S. Chang, Oxidant and SDS‐stable alkaline protease from Bacillus clausii I‐52: production and some properties. Journal of applied microbiology, 2003. 95(2): p. 267-272.
17. Germano, S., A. Pandey, C.A. Osaku, S.N. Rocha, and C.R. Soccol, Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme and microbial technology, 2003. 32(2): p. 246-251.
18. Meena, P., A.D. Tripathi, S. Srivastava, and A. Jha, Utilization of agro-industrial waste (wheat bran) for alkaline protease production by Pseudomonas aeruginosa in SSF using Taguchi (DOE) methodology. Biocatalysis and Agricultural Biotechnology, 2013. 2(3): p. 210-216.
19. Rathakrishnan, P. and P. Nagarajan, Statistical Approach for Effect of Physical factors on Protease Production by Bacillus Licheniformis using Sugarcane bagasse.
20. Vaseghi, Z., G.D. Najafpour, S. Mohseni, and S. Mahjoub, Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. International Journal of Food Science & Technology, 2013. 48(2): p. 283-289.
21. Sumantha, A., C. Larroche, and A. Pandey, Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technology and Biotechnology, 2006. 44(2): p. 211.
22. Barredo, J.-L., Microbial enzymes and biotransformations. Vol. 17. 2005: Springer.
23. Sundararajan, S., C.N. Kannan, and S. Chittibabu, Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent. Journal of bioscience and bioengineering, 2011. 111(2): p. 128-133.
24. Gupta, R., Q. Beg, and P. Lorenz, Bacterial alkaline proteases: molecular approaches and industrial applications. Applied microbiology and biotechnology, 2002. 59(1): p. 15-32.
25. Rao, M.B., A.M. Tanksale, M.S. Ghatge, and V.V. Deshpande, Molecular and biotechnological aspects of microbial proteases. Microbiology and molecular biology reviews, 1998. 62(3): p. 597-635.
26. Rani, K., R. Rana, and S. Datt, Review on latest overview of proteases. Int. J. Curr. Life Sci, 2012. 2: p. 12-18.
27. Feijoo-Siota, L. and T.G. Villa, Native and biotechnologically engineered plant proteases with industrial applications. Food and Bioprocess Technology, 2011. 4(6): p. 1066-1088.
28. Wong, D.W., Food enzymes: structure and mechanism. 1995: Springer.
29. Gupta, R., Q. Beg, S. Khan, and B. Chauhan, An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 2002. 60(4): p. 381-395.
30. Nadeem, M., J.I. Qazi, S. Baig, and Q. Syed, Effect of medium composition on commercially important alkaline protease production by Bacillus licheniformis N-2. Food Technol Biotechnol, 2008. 46(4): p. 388-394.
31. Bhunia, B., B. Basak, and A. Dey, A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology, 2012. 3(4): p. 448-457.
32. Mukhtar, H., Production of acid protease by Aspergillus niger using solid state fermentation. Pakistan Journal of Zoology, 2009. 41(4): p. 253-260.
33. Kenny, A., Introduction: Nomenclature and classes of peptidases, in Proteolytic Enzymes. 1999, Springer. p. 1-8.
34. Haile, G. and A. Gessesse, Properties of alkaline protease C45 produced by alkaliphilic Bacillus Sp. isolated from Chitu, Ethiopian Soda Lake. J. Biotechnol. Biomater, 2012. 2: p. 136.
35. Barrett, A.J., Peptidases: a view of classification and nomenclature, in Proteases New Perspectives. 1999, Springer. p. 1-12.
36. Mienda, B.S., A. Yahya, I. Galadima, and M.S. Shamsir, An Overview of Microbial Proteases for Industrial Applications. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2014. 5(1): p. 388-396.
37. Ciarkowski, J., P. Drabik, R. Janowski, M. Kozak, M. Jaskolski, and A. Grubb, Structural studies of cysteine proteases and their inhibitors. Acta Biochimica Polonica, 2001. 48(1): p. 1-20.
38. Haddar, A., R. Agrebi, A. Bougatef, N. Hmidet, A. Sellami-Kamoun, and M. Nasri, Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresource Technology, 2009. 100(13): p. 3366-3373.
39. Joo, H.-S. and C.-S. Chang, Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochemistry, 2005. 40(3): p. 1263-1270.
40. Akbalik, G., Screening for industrially important extracellular enzymes from alkalophilic Bacillus genus. 2003, Izmir Institute of Technology.
41. Singh, S.K., S.K. Singh, V.R. Tripathi, and S.K. Garg, Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochemistry, 2012. 47(10): p. 1479-1487.
42. Sellami-Kamoun, A., A. Haddar, N.E.-H. Ali, B. Ghorbel-Frikha, S. Kanoun, and M. Nasri, Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiological Research, 2008. 163(3): p. 299-306.
43. Rajkumar, R., K.R. Jayappriyan, and R. Rengasamy, Purification and characterization of a protease produced by Bacillus megaterium RRM2: application in detergent and dehairing industries. Journal of basic microbiology, 2011. 51(6): p. 614-624.
44. Joshi, S. and T. Satyanarayana, Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresource technology, 2013. 131: p. 76-85.
45. Sarker, P.K., S.A. Talukdar, P. Deb, S.A. Sayem, and K. Mohsina, Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. SpringerPlus, 2013. 2(1): p. 506.
46. Joo, H.-S., C.G. Kumar, G.-C. Park, K.T. Kim, S.R. Paik, and C.-S. Chang, Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochemistry, 2002. 38(2): p. 155-159.
47. Adinarayana, K., P. Ellaiah, and D.S. Prasad, Purification and partial characterization of thermostable serine alkaline protease from a newly isolatedBacillus subtilis PE-11. Aaps Pharmscitech, 2003. 4(4): p. 440-448.
48. Ningthoujam, D.S. and P. Kshetri, A thermostable alkaline protease from a moderately halo-alkalithermotolerant Bacillus subtilis strain SH1. Australian Journal of Basic and Applied Sciences, 2010. 4(10): p. 5126-5134.
49. Hadj-Ali, N.E., R. Agrebi, B. Ghorbel-Frikha, A. Sellami-Kamoun, S. Kanoun, and M. Nasri, Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme and Microbial Technology, 2007. 40(4): p. 515-523.
50. Kumar, C., Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Letters in applied microbiology, 2002. 34(1): p. 13-17.
51. Bholay, A.D., S.Y. More, V.B. Patil, and N. Patil, Bacterial Extracellular Alkaline Proteases and its Industrial Applications. International Research Journal of Biological Sciences, 2012. 1(7): p. 1-5.
52. Devi, M.K., A.R. Banu, G. Gnanaprabha, B. Pradeep, and M. Palaniswamy, Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Indian Journal of Science and Technology, 2008. 1(7): p. 1-6.
53. Kumar, C., M. Tiwari, and K. Jany, Novel alkaline serine proteases from alkalophilic Bacillus spp.: purification and some properties. Process Biochemistry, 1999. 34(5): p. 441-449.
54. Kuddus, M. and P.W. Ramteke, Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr. J. Microbiol. Res, 2011. 7: p. 809-816.
55. Kuddus, M. and P.W. Ramteke, Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Canadian journal of microbiology, 2009. 55(11): p. 1294-1301.
56. Rai, S.K. and A.K. Mukherjee, Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochemical Engineering Journal, 2010. 48(2): p. 173-180.
57. Jain, D., I. Pancha, S.K. Mishra, A. Shrivastav, and S. Mishra, Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.: A potential additive for laundry detergents. Bioresource technology, 2012. 115: p. 228-236.
58. Nascimento, W.C.A.d. and M.L.L. Martins, Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent. Brazilian Journal of Microbiology, 2006. 37(3): p. 307-311.
59. Deng, A., J. Wu, Y. Zhang, G. Zhang, and T. Wen, Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresource technology, 2010. 101(18): p. 7100-7106.
60. Sandhya, C., A. Sumantha, G. Szakacs, and A. Pandey, Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 2005. 40(8): p. 2689-2694.
61. Khan, F., New microbial proteases in leather and detergent industries. Innovative Research in Chemistry, 2013. 1(1): p. 1-6.
62. Madhavi, J., R. Srilakshmi, K. Rao, and K. Rao, Efficient leather dehairing by bacterial thermostable protease. Int J Biosci Biotechnol, 2011. 3(4).
63. Nilegaonkar, S., V. Zambare, P. Kanekar, P. Dhakephalkar, and S. Sarnaik, Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresource technology, 2007. 98(6): p. 1238-1245.
64. Vijayaraghavan, P., A. Vijayan, A. Arun, J. Jenisha, and S.G.P. Vincent, Cow dung: a potential biomass substrate for the production of detergent-stable dehairing protease by alkaliphilic Bacillus subtilis strain VV. SpringerPlus, 2012. 1(1): p. 76.
65. Anwar, A. and M. Saleemuddin, Alkaline proteases: a review. Bioresource Technology, 1998. 64(3): p. 175-183.
66. Bhunia, B., D. Dutta, and S. Chaudhuri, Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Notulae Scientia Biologicae, 2010. 2(2): p. 56-59.
67. Rathakrishnan, P. and P. Nagarajan, Optimizing factors affecting protease production by a Bacillus cereus using groundnut shell under solid substrate fermentation.
68. Bartholomew, W., E. Karow, M. Sfat, and R. Wilhelm, Oxygen transfer and agitation in submerged fermentations. Mass transfer of oxygen in submerged fermentation of Streptomyces griseus. Industrial & Engineering Chemistry, 1950. 42(9): p. 1801-1809.
69. Cui, Y., R. Van der Lans, and K. Luyben, Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnology and bioengineering, 1997. 55(5): p. 715-726.
70. Pandey, A., Solid-state fermentation. Biochemical Engineering Journal, 2003. 13(2): p. 81-84.
71. Raghavarao, K., T. Ranganathan, and N. Karanth, Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 2003. 13(2): p. 127-135.
72. Raimbault, M., General and microbiological aspects of solid substrate fermentation. Electronic Journal of Biotechnology, 1998. 1(3): p. 26-27.
73. Prabhakar, A., K. Krishnaiah, J. Janaun, and A. Bono, An overview of engineering aspects of solid state fermentation. Malaysian Journal of Microbiology, 2005. 1(2): p. 10-16.
74. Ali, H.K.Q. and M. Zulkali, Design aspects of bioreactors for solid-state fermentation: a review. Chemical and Biochemical Engineering Quarterly, 2011. 25(2): p. 255-266.
75. Bhargav, S., B.P. Panda, M. Ali, and S. Javed, Solid-state fermentation: an overview. Chemical and Biochemical Engineering Quarterly, 2008. 22(1): p. 49-70.
76. Viccini, G., D.A. Mitchell, S.D. Boit, J.C. Gern, A.S. Da Rosa, R.M. Costa, F.D. Dalsenter, O.F. Von Meien, and N. Krieger, Analysis of growth kinetic profiles in solid-state fermentation. Food Technology and Biotechnology, 2001. 39(4): p. 271-294.
77. Subramaniyam, R. and R. Vimala, Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat, 2012. 3: p. 480-486.
78. Mienda, B.S., A. Idi, and A. Umar, Microbiological features of solid state fermentation and its applications-An overview. Research in Biotechnology, 2011. 2(6).
79. Pandey, A., C.R. Soccol, P. Nigam, and V.T. Soccol, Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource technology, 2000. 74(1): p. 69-80.
80. Wang, L. and S.-T. Yang, Bioprocessing for Value-Added Products from Renewable Resources. 2007: Elsevier.
81. Durand, A., Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 2003. 13(2): p. 113-125.
82. Arora, D.K., Handbook of fungal biotechnology. 2004: Marcel Dekker, Inc.
83. Mitchell, D.A., N. Krieger, D.M. Stuart, and A. Pandey, New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochemistry, 2000. 35(10): p. 1211-1225.
84. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976. 72(1): p. 248-254.
85. Chen, Y., T. Chiang, T. Liang, I. Wang, and S. Wang, Reclamation of squid pen by Bacillus licheniformis TKU004 for the production of thermally stable and antimicrobial biosurfactant. Biocatal Agric Biotechnol 2012; 1: 62–9.
86. Anuraj, N., M. Sabnani, J.K. Mukesh Yadav, S. Deepika, C. Rachna, and J. Sahu, Identification and Characterization of Proteases and Amylases Producing Bacillus licheniformis Strain EMBS026 by 16S rRNA Gene Sequencing. International Journal of Microbiology Research, ISSN, 2012: p. 0975-5276.
87. McDonald, C. and L.L. Chen, The Lowry modification of the Folin reagent for determination of proteinase activity. Analytical biochemistry, 1965. 10(1): p. 175-177.
88. Mani, P., T.M.M. Johnbastin, R. Arunkumar, B. Lalithambikai, B. Brindha, E.S. prabha, R. Rinikarunya, R. Manigandan, C. Marimuthu, and V.R. Kannan, Thermostable alkaline protease from thermophilic and alkaliphilic Bacillus licheniformis and its application as a laundry detergent additive. International Journal of Medicine and Biosciences, 2012. 1(3): p. 18 - 26.
89. Nadeem, M., J.I. Qazi, and S. Baig, Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing. Brazilian Archives of Biology and Technology, 2010. 53(5): p. 1015-1025.
90. Cavello, I.A. and S.F. Cavalitto, Enzymatic Hydrolysis of Gelatin Layers of X-Ray Films and Release of Silver Particles Using Keratinolytic Serine Proteases from Purpureocillium lilacinum LPS 876. Journal of microbiology and biotechnology, 2013. 23(8): p. 1133-1139.
91. Shankar, S., S. More, and R.S. Laxman, Recovery of silver from waste X-ray film by alkaline protease from Conidiobolus coronatus. Kathmandu university journal of science, engineering and technology, 2010. 6(1): p. 60-69.
92. Imtiaz, S. and H. Mukhtar, Production of alkaline protease by Bacillus subtilis using solid state fermentation. African Journal of Microbiology Research, 2013. 7(16): p. 1558-1568.
93. Uyar, F. and Z. Baysal, Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochemistry, 2004. 39(12): p. 1893-1898.
94. Agrawal, D., P. Patidar, T. Banerjee, and S. Patil, Alkaline protease production by a soil isolate of Beauveria felina under SSF condition: parameter optimization and application to soy protein hydrolysis. Process biochemistry, 2005. 40(3): p. 1131-1136.
95. Prakasham, R., C.S. Rao, and P. Sarma, Green gram husk—an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresource technology, 2006. 97(13): p. 1449-1454.
96. Vijayaraghavan, P. and S.G.P. Vincent, Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly applications. Biochemical Engineering Journal, 2012. 69: p. 57-60.
97. Rathakrishnan, P. and P. Nagarajan, Red gram husk: A potent substrate for production of Protease by Bacillus cereus in Solid-State Fermentation. Red, 2011. 3(3): p. 1526-1533.
98. Joseph, B. and S. Palaniyandi, Determination of alkaline protease production in Serratia marcescens Sp7 using agro wastes as substrate medium, optimization of production parameters and purification of the enzyme. World Acad. Sci. Eng. Technol, 2011. 74: p. 252-256.
99. Mukhtar, H. and I. Haq, Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation. The Scientific World Journal, 2013: p. 1-7.
100. Mateos Diaz, J., J. Rodríguez, S. Roussos, J. Cordova, A. Abousalham, F. Carriere, and J. Baratti, Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme and Microbial Technology, 2006. 39(5): p. 1042-1050.
101. Mukherjee, A.K., H. Adhikari, and S.K. Rai, Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochemical Engineering Journal, 2008. 39(2): p. 353-361.
102. Chutmanop, J., S. Chuichulcherm, Y. Chisti, and P. Srinophakun, Protease production by Aspergillus oryzae in solid‐state fermentation using agroindustrial substrates. Journal of Chemical Technology and Biotechnology, 2008. 83(7): p. 1012-1018.
103. Prabhavathy, G., M.R. Pandian, and B. Senthilkumar, Optimization and production of extracellular alkaline protease by solid state fermentation using Bacillus subtilis. J. Acad. Indus. Res., 2012. 1(17): p. 427-430.
104. Rajkumar, R., J. Kothilmozhian, and R. Ramasamy, Production and characterization of a novel protease from Bacillus sp. RRM1 under solid state fermentation. Journal of microbiology and biotechnology, 2011. 21(6): p. 627-636.
105. Elibol, M. and A.R. Moreira, Optimizing some factors affecting alkaline protease production by a marine bacterium Teredinobacter turnirae under solid substrate fermentation. Process Biochemistry, 2005. 40(5): p. 1951-1956.
106. Bajaj, B.K. and G. Jamwal, Thermostable alkaline protease production from Bacillus pumilus D-6 by using agro-residues as substrates. Advances in Enzyme Research, 2013. 1: p. 30.
107. Lazim, H., H. Mankai, N. Slama, I. Barkallah, and F. Limam, Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. Journal of industrial microbiology & biotechnology, 2009. 36(4): p. 531-537.
108. Sumantha, A., P. Deepa, C. Sandhya, G. Szakacs, C.R. Soccol, and A. Pandey, Rice bran as a substrate for proteolytic enzyme production. Brazilian archives of Biology and Technology, 2006. 49(5): p. 843-851.
109. Rathakrishnan, P. and P. Nagarajan, Red gram husk: A potent substrate for production of Protease by Bacillus cereus in Solid-State Fermentation. International Journal of ChemTech Research, 2011. 3(3): p. 1526-1533.
110. Ramakrishna, D.P.N., R. Gopi, and G.S.V. Raja, Solid State Fermentation For The Production Of Alkaline Protease By Bacillus Subtilis Khs-1 (Mtcc No-10110) Using Different Agro- Industrial Residues. International Journal of Pharmacy and Pharmaceutical Sciences, 2012. 4(1): p. 512-517.
111. Vijayaraghavan, P., S. Lazarus, and S.G.P. Vincent, De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties. Saudi journal of biological sciences, 2014. 21(1): p. 27-34.
112. Olajuyigbe, F.M. and J.O. Ajele, Some properties of extracellular protease from Bacillus licheniformis lbbl-11 isolated from “iru”, a traditionally fermented African locust bean condiment. African Journal of Biochemistry Research, 2008. 2(10): p. 206-210.
113. Saurabh, S., I. Jasmine, G. Pritesh, and S.R. Kumar, Enhanced productivity of serine alkaline protease by Bacillus sp. using soybean as substrate. Malaysian Journal of Microbiology, 2007. 3(1): p. 1-6.
114. Jellouli, K., O. Ghorbel-Bellaaj, H.B. Ayed, L. Manni, R. Agrebi, and M. Nasri, Alkaline-protease from Bacillus licheniformis MP1: Purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process Biochemistry, 2011. 46(6): p. 1248-1256.
115. Doddapaneni, K.K., R. Tatineni, R.N. Vellanki, S. Rachcha, N. Anabrolu, V. Narakuti, and L.N. Mangamoori, Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiological research, 2009. 164(4): p. 383-390.
116. Xiuqin, C., B. Chunxia, S. Weiqi, Z. Wei, S. Jie, D. Yumei, W. Bin, Y. Meiying, and Y. Zhiyong, Purification and stability characteristics of an extracellular alkaline serine protease from a newly isolated Stenotrophomonas maltophilia strain D2. African Journal of Microbiology Research, 2013. 7(33): p. 4244-4250.
117. Choudhary, V., Recovery of Silver from used X-ray films by Aspergillus versicolor protease. Journal of Academia and Industrial Research (JAIR), 2013. 2(1): p. 39.
118. Srinubabu, G., N. Lokeswari, and K. Jayaraju, Screening of nutritional parameters for the production of protease from Aspergillus oryzae. Journal of Chemistry, 2007. 4(2): p. 208-215.
119. Simkovic, M., A. Kurucova, M. Hunova, and Ľ. Varečka, Induction of secretion of extracellular proteases from Trichoderma viride. Acta Chimica Slovaca, 2008. 1(1): p. 250-264.