فهرست:
اول- مروری بر مطالعات پیشین
1-1- میکروارگانیسمهای تولیدکننده پلیهیدروکسیآلکانواتها ............................................................ 7
1-2- کوپلیمرهای هیدروکسیآلکانوات ..............................................................................................11
1-3- نحوه سنتز بیوپلیمرهای هیدروکسیآلکانوات.................................................................................14
1-4- منابع ارزانقیمت کربنی در تولید پلیمرهای PHA ........................................................................15
1-5- سنتز پلیهیدروکسیآلکانواتها در گیاهان...................................................................................16
1-6- اندازهگیری کمی بیوپلیمرها..........................................................................................................18
1-7- خواص فیزیکی و موارد استفاده پلیمرهای زیستی......................................................................... 19
1-8- قابلیت تجزیهپذیری پلیهیدروکسیآلکانواتها............................................................................21
1-9- فرایند تولید پلی هیدروکسی آلکانوآتها........................................................................................23
1-9-1- فرایند غیر پیوسته....................................................................................................................23
1-9-2- فرایند نیمه پیوسته و پیوسته.......................................................................................................24
1-10- مدل سینتیکی رشد میکروارگانیسم.............................................................................................28
1-10-1- بررسی سینتیک رشد در فرایند غیر پیوسته..............................................................................31
1 -11- تعیین ضریب انتقال اکسیژن دربیوراکتور..................................................................................33
1-11-1- روشهای اندازه گیری ...................................................................................................33
عنوان صفحه
1-12- استفاده پلیهیدروکسیآلکانواتها در صنایع ...............................................................................36
1-13- کاربرد بیوپلیمر ها در نانوکامپوزیتهای پلیمری..............................................................................39
1-13-1- انواع نانوکامپوزیتهای پلیمری ................................................................................................39
1-13-2- روش های ساخت نانوکامپوزیتهای پلیمری .............................................................................41
فصل دوم- مواد و روش ها
2-1- میکروارگانیسم..............................................................................................................................45
2-2- انتقال میکروارگانیسم از حالت یخ خشک به محیط کشت اولیه......................................................47
2-3- محیط نگهداری............................................................................................................................47
2-4- محیط کشت تلقیح.......................................................................................................................48
2-5- محیط کشت تخمیر......................................................................................................................48
2-6- آماده سازی کشت تلقیح..............................................................................................................49
2-7- شرایط تخمیر ونمونه برداری........................................................................................................49
2-8- تهیه منحنی کالیبراسیون وزن خشک سلولی- جذب....................................................................50
2-9- تهیه منحنیهای کالیبراسیون جهت تعیین مقادیر منابع کربن.........................................................51
2-9-1- طرز تهیه محلول معرف DNS...............................................................................................51
2-9-2- رسم منحنی کالیبراسیون قندهای قابل تبدیل............................................................................51
عنوان صفحه
2-10- شرایط کروماتوگرافگازی برای اندازهگیری پلیهیدروکسیآلکانواتها............................52
2-10-1- تهیه استاندارد داخلی.......................................................................................................53
2-10-2- تهیه منحنیهای کالیبراسیون متیلهیدروکسیبوتیرات، متیل هیدروکسیوالرات
و متیلهیدروکسیهگزانوات...........................................................................................................53
2-10-3- استخراج بیوپلیمر و آماده سازی نمونه برای تزریق به دستگاه GC....................................54
2-10-4- روش شناسائی و تایید بیوپلیمر توسط 13C NMR،1H NMR ،. FT-IR................................55
2-10-4-1- طیف سنجی مادون قرمز (FT-IR) .............................................................................55
2-10-4-2- طیف بینی رزونانس مغناطیسی هسته ای (NMR) ......................................................55
2-11- فرایند بیولوژیکی جهت تولید بیوپلیمر درون سلولی در بیوراکتور.........................................56
2-11-1- فرایند کشت غیرپیوسته.....................................................................................................56
2-11-2- فرایندکشت نیمه پیوسته.....................................................................................................56
2- 11- 2- 1- فرایند کشت نیمه پیوسته با خوراک دهی ثابت منبع کربن ونیتروژن...........................57
2- 11- 2- 2- فرایند کشت نیمه پیوسته با خوراک دهی متغیر منبع کربن ونیتروژن .........................57
2-11-3- تعیین ضریب انتقال اکسیژن در بیوراکتور..........................................................................57
2-12- تولید نانو کامپوزیت پلی هیدروکسی بوتیرات هیدروکسی والرات
/هیدروکسی اپتایت.........................................................................................................................59
عنوان صفحه
فصل سوم- نتایج و بحث
3-1- میکروارگانیسم Hydrogenophaga pseudoflava DSMZ 1034..............................62
3-1- 1- بررسی شرایط فرایند بیولوژیکی..........................................................................................62
3-1-2- استفاده از گلوکز بعنوان تنها منبع کربن................................................................................63
3-1-3- استفاده ازفروکتوز بعنوان تنها منبع کربن ...............................................................................65
3-1-3- استفاده ازآب پنیر بعنوان تنها منبع کربن ...............................................................................66
3- 2- میکروارگانیسم Cupriavidus necator DSM 545......................................................68
3-2-1- بررسی شرایط فرایند بیولوژیکی ...........................................................................................68
3-2-1-2- بررسی تاثیر نسبت نیتروژن به کربن ..................................................................................69
3-2-2- استفاده از گلوکز بعنوان تنها منبع کربن................................................................................73
3-2-3- استفاده ازفروکتوز بعنوان تنها منبع کربن...............................................................................74
3-2-4- استفاده ازملاس بعنوان تنها منبع کربن...................................................................................75
3-2-5- تاثیر استات بر رشد میکروارگانیسم و تولید بیوپلیمر..............................................................77
3-2-5-1 -ترکیب ملاس و استات بعنوان منابع کربن.........................................................................77
3-3- میکروارگانیسم Azotobacter beijerinckii DSMZ 1041.........................................80
3-3-1- بررسی شرایط فرایند بیولوژیکی..........................................................................................80
3-3-2- استفاده از گلوکز بعنوان تنها منبع کربن...............................................................................82
3-3-3- استفاده ازفروکتوز بعنوان تنها منبع کربن..............................................................................83
3-3-4- استفاده ازآب پنیر بعنوان تنها منبع کربن...............................................................................84
3-4- میکروارگانیسم Azohydromonas lata DSMZ 1123..............................85
عنوان صفحه
3-4-1- بررسی شرایط فرایند بیولوژیکی..........................................................................................85
3-4-2- استفاده از گلوکز بعنوان تنها منبع کربن..............................................................................87
3-4-3- استفاده ازفروکتوز بعنوان تنها منبع کربن .............................................................................88
3-4-4- استفاده ازآب پنیر بعنوان تنها منبع کربن .............................................................................89
3-5- نتایج کلی مقایسه چهار میکرو ارگانیسم در تولید بیوپلیمر .......................................................92
3-6- بررسی سینتیک رشد میکروارگانیسم در تولید بیوپلیمر............................................................92
3-7- فرایند کشت غیر پیوسته در بیوراکتور.....................................................................................95
3-7-1- تعیین ضریب انتقال اکسیژن در بیوراکتور ..........................................................................97
3-8- فرایند کشت نیمه پیوسته با خوراک دهی ثابت در بیوراکتور.................................................98
3-9- فرایند کشت نیمه پیوسته با خوراک دهی متغیر (پله ای) در بیوراکتور.....................................99
3-10- بازده بیومس ....................................................................................................................100
3-11- بهره دهی .......................................................................................................................102
3-12- بازده تولید ......................................................................................................................103
3- 13- آزمایشهای تشخیصی جهت تایید بیوپلیمر تولید شده............................................................105
3-13-1- طیف سنجی مادون قرمز (FT-IR) ...............................................................................105
3-13-2- طیف سنجی رزونانس مغناطیسی هسته ای (NMR) ..........................................................106
3-14- بررسی امکان استفاده از بیوپلیمر تولید شده در نانوکامپوزیتها.................................................108
عنوان صفحه
فصل چهارم-نتیجه گیری وپیشنهادات
4-1- نتیجه گیری..................................................................................................................113
4-2- پیشنهادات....................................................................................................................116
مراجع ...................................................................................................................................117
چکیده انگلیسی ..................................................................................................................127
پیوستها.................................................................................................................................
منبع:
[1] C.S.K. Reddy, R. Ghai, Rashmi, V.C. Kalia, Polyhydroxyalkanoates: an overview, Bioresource Technology, 87 (2003) 137-146.
[2] M. Shimao, Biodegradation of plastics, Current Opinion in Biotechnology, 12 (2001) 242-247.
[3] K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters, Progress in Polymer Science, 25 (2000) 1503-1555.
[4] S.Y. Lee, Bacterial polyhydroxyalkanoates, Biotechnology and Bioengineering, 49 (1996) 1-14.
[5] S. Khanna, A.K. Srivastava, Optimization of nutrient feed concentration and addition time for production of poly([beta]-hydroxybutyrate), Enzyme and Microbial Technology, 39 (2006) 1145-1151.
[6] B. Panda, P. Jain, L. Sharma, N. Mallick, Optimization of cultural and nutritional conditions for accumulation of poly-[beta]-hydroxybutyrate in Synechocystis sp. PCC 6803, Bioresource Technology, 97 (2006) 1296-1301.
[7] L. Sharma, A. Kumar Singh, B. Panda, N. Mallick, Process optimization for poly-[beta]-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology, Bioresource Technology, 98 (2007) 987-993.
[8] S. Ciesielski, A. Cydzik-Kwiatkowska, T. Pokoj, E. Klimiuk, Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge, Journal of Applied Microbiology, 101 (2006) 190-199.
[9] J.M. Luengo, B. García, A. Sandoval, G. Naharro, E.R. Olivera, Bioplastics from microorganisms, Current Opinion in Microbiology, 6 (2003) 251-260.
[10] M. Bassas, E. Rodríguez, J. Llorens, A. Manresa, Poly(3-hydroxyalkanoate) produced from Pseudomonas aeruginosa 42A2 (NCBIM 40045): Effect of fatty acid nature as nutrient, Journal of Non-Crystalline Solids, 352 (2006) 2259-2263.
[11] G. Braunegg, G. Lefebvre, K.F. Genser, Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects, Journal of Biotechnology, 65 (1998) 127-161.
[12] Y. Dai, L. Lambert, Z. Yuan, J. Keller, Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition, Journal of Biotechnology, 134 (2008) 137-145.
[13] G.J.L. Griffin, Chemistry and technology of biodegradable polymers, Blackie Academic & Professional ; Chapman & Hall, London; New York; New York, 1993.
[14] S.Y. Lee, J.-i. Choi, H.H. Wong, Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review, International Journal of Biological Macromolecules, 25 (1999) 31-36.
[15] R.W. Lenz, R.H. Marchessault, Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology, Biomacromolecules, 6 (2004) 1-8.
[16] D. Solaiman, R. Ashby, T. Foglia, W. Marmer, Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates), Applied Microbiology and Biotechnology, 71 (2006) 783-789.
[17] N. Mallick, S. Gupta, B. Panda, R. Sen, Process optimization for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production by Nostoc muscorum, Biochemical Engineering Journal, 37 (2007) 125-130.
[18] S. Khanna, A.K. Srivastava, Recent advances in microbial polyhydroxyalkanoates, Process Biochemistry, 40 (2005) 607-619.
[19] M. Nurbas, T. Kutsal, Production of PHB and P(HB-co-HV) biopolymers by Using Alcaligenes eutrophus, Iranian Polymer Journal, 13 (2004) 45-51.
[20] B.A. Ramsay, K. Lomaliza, C. Chavarie, B. Dube, P. Bataille, J.A. Ramsay, Production of poly-(b-hydroxybutyric-co-b-hydroxyvaleric) acids, Applied and Environmental Microbiology, 56 (1990) 2093-2098.
[21] S. Khanna, A.K. Srivastava, Statistical media optimization studies for growth and PHB production by Ralstonia eutropha, Process Biochemistry, 40 (2005) 2173-2182.
[22] P.R. Patwardhan, A.K. Srivastava, Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production, Biochemical Engineering Journal, 20 (2004) 21-28.
[23] M. Koller, R. Bona, E. Chiellini, E.G. Fernandes, P. Horvat, C. Kutschera, P. Hesse, G. Braunegg, Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora, Bioresource Technology, 99 (2008) 4854-4863.
[24] M. Tohyama, K. Shimizu, Control of a mixed culture of Lactobacillus delbrueckii and ralstonia eutropha for the production of PHB from glucose via lactate, Biochemical Engineering Journal, 4 (1999) 45-53.
[25] M. Koller, A. Atli, cacute, Y. Gonzalez-Garcia, C. Kutschera, G. Braunegg, Polyhydroxyalkanoate (PHA) Biosynthesis from Whey Lactose, Macromolecular Symposia, 272 (2008) 87-92.
[26] Y.J. Wang, F.L. Hua, Y.F. Tsang, S.Y. Chan, S.N. Sin, H. Chua, P.H.F. Yu, N.Q. Ren, Synthesis of PHAs from waster under various C:N ratios, Bioresource Technology, 98 (2007) 1690-1693.
[27] W.-H. Lee, C.-Y. Loo, C.T. Nomura, K. Sudesh, Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors, Bioresource Technology, 99 (2008) 6844-6851.
[28] W. Tian, K. Hong, G.-Q. Chen, Q. Wu, R.-q. Zhang, W. Huang, Production of polyesters consisting of medium chain length 3-hydroxyalkanoic acids by Pseudomonas mendocina 0806 from various carbon sources, Antonie van Leeuwenhoek, 77 (2000) 31-36.
[29] A.A. Amirul, A.R.M. Yahya, K. Sudesh, M.N.M. Azizan, M.I.A. Majid, Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia, Bioresource Technology, 99 (2008) 4903-4909.
[30] L.L. Madison, G.W. Huisman, Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic, Microbiology and Molecular Biology Reviews, 63 (1999) 21-53.
[31] P. Suriyamongkol, R. Weselake, S. Narine, M. Moloney, S. Shah, Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants -- A review, Biotechnology Advances, 25 148-175.
[32] J.A. Ramsay, M.C. Aly Hassan, B.A. Ramsay, Hemicellulose as a potential substrate for production of poly(β-hydroxyalkanoates), Canadian Journal of Microbiology, 41 (1995) 262-266.
[33] W.F. Hu, H. Chua, P.H.F. Yu, Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from activated sludge, Biotechnology Letters, 19 (1997) 695-698.
[34] M. Koller, A. Atlić, M. Dias, A. Reiterer, G. Braunegg, Microbial PHA Production from Waste Raw Materials, in, 2010, pp. 85-119.
[35] F. Liu, W. Li, D. Ridgway, T. Gu, Z. Shen, Production of poly-beta-hydroxybutyrate on molasses by recombinant Escherichia coli, Biotechnology Letters, 20 (1998) 345-348.
[36] F.C. Oliveira, M.L. Dias, L.R. Castilho, D.M.G. Freire, Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation, Bioresource Technology, 98 (2007) 633-638.
[37] A.A. Koutinas, Y. Xu, R. Wang, C. Webb, Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery, Enzyme and Microbial Technology, 40 (2007) 1035-1044.
[38] Y. Poirier, D.E. Dennis, K. Klomparens, C. Somerville, Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants, Science, 256 (1992) 520-523.
[39] V. Mittendorf, V. Bongcam, L. Allenbach, G. Coullerez, raldine, N. Martini, Y. Poirier, Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through -oxidation, The Plant Journal, 20 (1999) 45-55.
[40] H. Nakashita, Y. Arai, K. Yoshioka, T. Fukui, Y. Doi, R. Usami, K. Horikoshi, I. Yamaguchi, Production of Biodegradable Polyester by a Transgenic Tobacco, Bioscience, Biotechnology, and Biochemistry, 63 (1999) 870-874.
[41] A. Steinbüchel, B. Füchtenbusch, V. Gorenflo, S. Hein, R. Jossek, S. Langenbach, B.H.A. Rehm, Biosynthesis of polyesters in bacteria and recombinant organisms, Polymer Degradation and Stability, 59 (1998) 177-182.
[42] K.L. Houmiel, S. Slater, D. Broyles, L. Casagrande, S. Colburn, K. Gonzalez, T.A. Mitsky, S.E. Reiser, D. Shah, N.B. Taylor, M. Tran, H.E. Valentin, K.J. Gruys, Poly(β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus, Planta, 209 (1999) 547-550.
[43] G. Braunegg, B. Sonnleitner, R.M. Lafferty, A rapid gas chromatographic method for the determination of poly β hydroxybutyric acid in microbial biomass, European Journal of Applied Microbiology and Biotechnology, 6 (1978) 29-37.
[44] D.B. Karr, J.K. Waters, D.W. Emerich, Analysis of poly-β-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection, Applied and Environmental Microbiology, 46 (1983) 1339-1344.
[45] R.P.X. Hesselmann, T. Fleischmann, R. Hany, A.J.B. Zehnder, Determination of polyhydroxyalkanoates in activated sludge by ion chromatographic and enzymatic methods, Journal of Microbiological Methods, 35 (1999) 111-119.
[46] V. Gorenflo, A. Steinbüchel, S. Marose, M. Rieseberg, T. Scheper, Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining, Applied Microbiology and Biotechnology, 51 (1999) 765-772.
[47] K.-i. Kasuya, Y. Inoue, Y. Doi, Adsorption kinetics of bacterial PHB depolymerase on the surface of polyhydroxyalkanoate films, International Journal of Biological Macromolecules, 19 (1996) 35-40.
[48] L. Sharma, N. Mallick, Accumulation of poly-[beta]-hydroxybutyrate in Nostoc muscorum: regulation by pH, light-dark cycles, N and P status and carbon sources, Bioresource Technology, 96 (2005) 1304-1310.
[49] J. Quillaguamán, O. Delgado, B. Mattiasson, R. Hatti-Kaul, Poly([beta]-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1, Enzyme and Microbial Technology, 38 (2006) 148-154.
[50] L.P. Mazur, D.D. da Silva, V.H. Grigull, M.C.F. Garcia, T.O. Magalhães, T.M. Wagner, S. Einloft, J. Dullius, A.L. Schneider, A.P.T. Pezzin, Strategies of biosynthesis of poly(3-hydroxybutyrate) supplemented with biodiesel obtained from rice bran oil, Materials Science and Engineering: C, 29 (2009) 583-587.
[51] G. Du, J. Chen, J. Yu, S. Lun, Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system, Journal of Biotechnology, 88 (2001) 59-65.
[52] W.S. Ahn, S.J. Park, S.Y. Lee, Production of Poly(3-Hydroxybutyrate) by Fed-Batch Culture of Recombinant Escherichia coli with a Highly Concentrated Whey Solution, Appl. Environ. Microbiol., 66 (2000) 3624-3627.
[53] B.S. Kim, S.C. Lee, S.Y. Lee, H.N. Chang, Y.K. Chang, S.I. Woo, Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control, Biotechnology and Bioengineering, 43 (1994) 892-898.
[54] H.W. Ryu, S.K. Hahn, Y.K. Chang, H.N. Chang, Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation, Biotechnology and Bioengineering, 55 (1997) 28-32.
[55] P. Patwardhan, A.K. Srivastava, Fed-batch cultivation of Wautersia eutropha, Bioresource Technology, 99 (2008) 1787-1792.
[56] S. Khanna, A.K. Srivastava, Computer simulated fed-batch cultivation for over production of PHB: A comparison of simultaneous and alternate feeding of carbon and nitrogen, Biochemical Engineering Journal, 27 (2006) 197-203.
[57] R. Dhanasekar, T. Viruthagiri, P.L. Sabarathinam, Poly(3-hydroxy butyrate) synthesis from a mutant strain Azotobacter vinelandii utilizing glucose in a batch reactor, Biochemical Engineering Journal, 16 (2003) 1-8.
[58] Y. Liu, Q.-S. Liu, J.-H. Tay, Initial conditions-dependent growth kinetics in microbial batch culture, Process Biochemistry, 40 (2005) 155-160.
[59] J. Wang, F. Fang, H.-Q. Yu, Substrate consumption and biomass growth of Ralstonia eutropha at various S0/X0 levels in batch cultures, Bioresource Technology, 98 (2007) 2599-2604.
[60] A. Mulchandani, J.H.T. Luong, C. Groom, Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697, Applied Microbiology and Biotechnology, 30 (1989) 11-17.
[61] S. Shahhosseini, Simulation and optimisation of PHB production in fed-batch culture of Ralstonia eutropha, Process Biochemistry, 39 (2004) 963-969.
[62] C. Bandaiphet, P. Prasertsan, Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7, Carbohydrate Polymers, 66 (2006) 216-228.
[63] F. García-Ochoa, E.G. Castro, V.E. Santos, Oxygen transfer and uptake rates during xanthan gum production, Enzyme and Microbial Technology, 27 (2000) 680-690.
[64] H. Djelal, F. Larher, G. Martin, A. Amrane, Effect of the dissolved oxygen on the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions, Journal of Biotechnology, 125 (2006) 95-103.
[65] A.J. Anderson, E.A. Dawes, Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiol. Mol. Biol. Rev., 54 (1990) 450-472.
[66] D.Z. Chen, C.Y. Tang, K.C. Chan, C.P. Tsui, P.H.F. Yu, M.C.P. Leung, P.S. Uskokovic, Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite, Composites Science and Technology, 67 (2007) 1617-1626.
[67] T. Kokubo, Bioactive glass ceramics: properties and applications, Biomaterials, 12 (1991) 155-163.
[68] K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura, M. Oka, Bone-bonding ability of P2O5-free CaO · SiO2 glasses, Journal of Biomedical Materials Research, 25 (1991) 357-365.
[69] C. Chu, J. Zhu, Z. Yin, P. Lin, Optimal design and fabrication of hydroxyapatite-Ti asymmetrical functionally graded biomaterial, Materials Science and Engineering A, 348 (2003) 244-250.
[70] E.C.S. Rigo, A.O. Boschi, M. Yoshimoto, S. Allegrini Jr, B. Konig Jr, M.J. Carbonari, Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants, Materials Science and Engineering C, 24 (2004) 647-651.
[71] A.R. Boccaccini, V. Maquet, Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications, Composites Science and Technology, 63 (2003) 2417-2429.
[72] X.L. Xie, C.Y. Tang, K.Y.Y. Chan, X.C. Wu, C.P. Tsui, C.Y. Cheung, Wear performance of ultrahigh molecular weight polyethylene/quartz composites, Biomaterials, 24 (2003) 1889-1896.
[73] X.H. Gong, C.Y. Tang, H.C. Hu, X.P. Zhou, X.L. Xie, Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene, Journal of Materials Science: Materials in Medicine, 15 (2004) 1141-1146.
[74] J.P. Fan, C.P. Tsui, C.Y. Tang, Modeling of the mechanical behavior of HA/PEEK biocomposite under quasi-static tensile load, Materials Science and Engineering A, 382 (2004) 341-350.
[75] U. Arnold, K. Lindenhayn, C. Perka, In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites, Biomaterials, 23 (2002) 2303-2310.
[76] N. Tamai, A. Myoui, M. Hirao, T. Kaito, T. Ochi, J. Tanaka, K. Takaoka, H. Yoshikawa, A new biotechnology for articular cartilage repair: Subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2), Osteoarthritis and Cartilage, 13 (2005) 405-417.
[77] C. Doyle, E.T. Tanner, W. Bonfield, In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite, Biomaterials, 12 (1991) 841-847.
[78] J. Ni, M. Wang, In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite, Materials Science and Engineering C, 20 (2002) 101-109.
[79] Y.E. Greish, J.D. Bender, S. Lakshmi, P.W. Brown, H.R. Allcock, C.T. Laurencin, Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate) phosphazene composites for biomedical applications, Biomaterials, 26 (2005) 1-9.
[80] A.P. Marques, R.L. Reis, Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation, Materials Science and Engineering C, 25 (2005) 215-229.
[81] R.A. Sousa, R.L. Reis, A.M. Cunha, M.J. Bevis, Processing and properties of bone-analogue biodegradable and bioinert polymeric composites, Composites Science and Technology, 63 (2003) 389-402.
[82] Q. Hu, B. Li, M. Wang, J. Shen, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture, Biomaterials, 25 (2004) 779-785.
[83] X. Deng, J. Hao, C. Wang, Preparation and mechanical properties of nanocomposites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals, Biomaterials, 22 (2001) 2867-2873.
[84] J.H. Lee, T.G. Park, H.S. Park, D.S. Lee, Y.K. Lee, S.C. Yoon, J.D. Nam, Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold, Biomaterials, 24 (2003) 2773-2778.
[85] Z. Hong, P. Zhang, C. He, X. Qiu, A. Liu, L. Chen, X. Chen, X. Jing, Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility, Biomaterials, 26 (2005) 6296-6304.
[86] S.S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, B.S. Kim, Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials, 27 (2006) 1399-1409.
[87] M. Kikuchi, H.N. Matsumoto, T. Yamada, Y. Koyama, K. Takakuda, J. Tanaka, Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites, Biomaterials, 25 (2004) 63-69.
[88] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, J. Tanaka, Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22 (2001) 1705-1711.
[89] A.K. Lynn, T. Nakamura, N. Patel, A.E. Porter, A.C. Renouf, P.R. Laity, S.M. Best, R.E. Cameron, Y. Shimizu, W. Bonfield, Composition-controlled nanocomposites of apatite and collagen incorporating silicon as an osseopromotive agent, Journal of Biomedical Materials Research - Part A, 74 (2005) 447-453.
[90] M.C. Chang, J. Tanaka, FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde, Biomaterials, 23 (2002) 4811-4818.
[91] M.C. Chang, J. Tanaka, XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde, Biomaterials, 23 (2002) 3879-3885.
[92] S.S. Liao, F.Z. Cui, Y. Zhu, Osteoblasts Adherence and Migration through Three-dimensional Porous Mineralized Collagen Based Composite: nHAC/PLA, Journal of Bioactive and Compatible Polymers, 19 (2004) 117-130.
[93] M.C. Chang, C.C. Ko, W.H. Douglas, Preparation of hydroxyapatite-gelatin nanocomposite, Biomaterials, 24 (2003) 2853-2862.
[94] H.W. Kim, H.E. Kim, V. Salih, Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds, Biomaterials, 26 (2005) 5221-5230.
[95] L.J. Chen, M. Wang, Production and evaluation of biodegradable composites based on PHB-PHV copolymer, Biomaterials, 23 (2002) 2631-2639.
[96] S.K. Misra, T.I. Ansari, S.P. Valappil, D. Mohn, S.E. Philip, W.J. Stark, I. Roy, J.C. Knowles, V. Salih, A.R. Boccaccini, Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications, Biomaterials, 31 (2010) 2806-2815.
[97] M.A. Paul, M. Alexandre, P. Degée, C. Henrist, A. Rulmont, P. Dubois, New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: Thermal and morphological study, Polymer, 44 (2003) 443-450.
[98] C.F. Ou, M.T. Ho, J.R. Lin, Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with organoclay, Journal of Applied Polymer Science, 91 (2004) 140-145.
[99] K.E. Strawhecker, E. Manias, Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites, Chemistry of Materials, 12 (2000) 2943-2949.
[100] N. Galego, C. Rozsa, R. Sánchez, J. Fung, V. Analía, J. Santo Tomás, Characterization and application of poly([beta]-hydroxyalkanoates) family as composite biomaterials, Polymer Testing, 19 (2000) 485-492.
[101] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry, 31 (1959) 426-428.
[102] J.M.B.T. Cavalheiro, M.C.M.D. de Almeida, C. Grandfils, M.M.R. da Fonseca, Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol, Process Biochemistry, 44 (2009) 509-515.
[103] E.A. Dawes, P.J. Senior, The Role and Regulation of Energy Reserve Polymers in Micro-organisms, in: A.H. Rose, D.W. Tempest (Eds.) Advances in Microbial Physiology, Academic Press, 1973, pp. 135-266.
[104] F. Tabandeh, E. Vasheghani-Farahani, Biosynthesis of Poly-β-hydroxybutyrate as a biodegradable polymer, Iranian Polymer Journal, 12 (2003) 37-42.
[105] J. Yu, Production of PHA from starchy wastewater via organic acids, Journal of Biotechnology, 86 (2001) 105-112.
[106] M. Beaulieu, Y. Beaulieu, J. Melinard, S. Pandian, J. Goulet, Influence of Ammonium Salts and Cane Molasses on Growth of Alcaligenes eutrophus and Production of Polyhydroxybutyrate, Appl. Environ. Microbiol., 61 (1995) 165-169.
[107] H. Kimura, T. Ohura, T. Matsumoto, T. Ikarashi, Effective biosynthesis of poly3-hydoxy- butyrate-co-4-hydroxybutyrate with high 4-hydroxybutyrate fractions by Wautersia eutropha in the presence of -amino acids, Polymer International, 57 (2008) 149-157.
[108] P. Bordes, E. Pollet, L. Avérous, Nano-biocomposites: Biodegradable polyester/nanoclay systems, Progress in Polymer Science, 34 (2009) 125-155.