فهرست:
چکیده. ب
واژگان کلیدی.. ب
فهرست مطالب... ت
لیست جدول ها ذ
لیست شکل ها ز
لیست تصویرها ض
لیست علایم و اختصارات.. ط
1 فصل اول: مقدمه 1
1-1 مقدمه 1
1-2 سوختهای بیولوژیکی.. 2
1-3 روشهای تولید سوختهای بیولوژیکی نسل دوم. 4
1-3-1 فرایند تبدیل شیمیائی-حرارتی بیومس... 6
1-3-1-1 تبدیل به گاز کردن بیومس... 6
1-3-1-2 تخمیر گاز سنتز. 9
1-4 مزیتهای بیوکاتالیستها 10
1-5 تولید اتانول به عنوان سوخت بیولوژیکی.. 11
1-6 طرح مساله و ضرورت انجام پروژه 14
1-7 اهداف کلی پروژه 14
1-8 اهداف و چهارچوب پروژه 15
1-9 تقسیم بندی فصول پایان نامه. 17
2 فصل دوم: مروری بر متون علمی 19
2-1 مقدمه 19
2-2 واکنش بیولوژیکی جابجائی آب-گاز 20
2-3 باکتریهای استوژنیک.. 29
2-3-1 کلستریدیوم لانگالی.. 34
2-4 مسیر متابولیکی استوژنها 36
2-5 عوامل موثر در تخمیر گاز سنتز. 42
2-5-1 تاثیر ترکیب محیط کشت.. 42
2-5-2 تاثیر منبع آلی.. 46
2-5-3 تاثیر pH محیط کشت.. 49
2-5-4 تاثیر عامل کاهنده 51
2-5-5 تاثیر عناصر جزئی.. 54
2-5-6 اثرات بازدارندگی در محیط تخمیر. 56
2-5-7 محدودیتهای انتقال جرم. 58
2-5-8 تاثیر فشار سوبسترای گازی.. 64
3 فصل سوم: مواد مورد نیاز و روش کار 68
3-1 مقدمه 68
3-2 باکتری کلستریدیوم لانگالی.. 69
3-3 محیط کشت باکتری لانگالی.. 70
3-3-1 ترکیبات محیط کشت مایع. 72
3-3-1-1 محلول عناصر جزئی.. 72
3-3-1-2 محلول ویتامین ولف.. 72
3-3-1-3 محلول عوامل کاهنده 73
3-4 روش تهیه محیط کشت مایع. 73
3-4-1 روش تهیه محیط کشت جامد. 75
3-5 نحوه تکثیر باکتری لانگالی.. 75
3-6 آزمایشهای ناپیوسته کشت لانگالی.. 79
3-6-1 رشد باکتری با سوبسترای آلی.. 79
3-6-1-1 تاثیر نوع سوبسترای آلی.. 79
3-6-1-2 تاثیر غلظت سوبسترای آلی.. 80
3-6-2 رشد باکتری با گاز سنتز. 81
3-6-2-1 تاثیر همزمان عوامل کاهنده و pH اولیه محیط کشت.. 81
3-6-2-2 تاثیر فشار اولیه گاز سنتز در بیوراکتورهای ناپیوسته. 83
3-7 آزمایشهای پیوسته تخمیر گاز سنتز. 84
3-7-1 تاثیر نرخ رقیق سازی.. 87
3-7-2 تاثیر شدت جریان گاز سنتز و دور همزن. 88
3-8 آنالیز نتایج 88
3-8-1 اندازه گیری دانسیته سلولی.. 88
3-8-2 آنالیز فروکتوز و گلوکز در محیط کشت.. 90
3-8-3 آنالیز نمونه های مایع برای اتانول و استات.. 93
3-8-4 آنالیز نمونه های گاز 94
3-9 مدلهای کینتیکی و روش به دست آوردن آنها 95
3-9-1 کینتیک رشد سلول. 95
3-9-2 محاسبات انتقال جرم. 98
3-9-2-1 انتقال جرم در سیستم ناپیوسته. 98
3-9-2-2 انتقال جرم در سیستم پیوسته. 100
3-9-3 نرخ واکنش... 102
4 فصل چهارم: نتایج آزمایشها و تحلیل داده ها 103
4-1 مقدمه 103
4-2 تاثیر سوبسترای آلی.. 104
4-2-1 رشد سلول و مصرف سوبسترا 104
4-2-2 مسیر متابولیکی پیشنهاد شده برای لانگالی.. 108
4-2-3 تولید محصول. 111
4-2-4 تاثیر غلظت فروکتوز 115
4-2-4-1 رشد سلول. 115
4-2-4-2 تولید محصول. 118
4-3 تاثیر همزمان عوامل کاهنده و pH.. 122
4-3-1 رشد سلول. 123
4-3-2 مصرف سوبسترای گازی.. 125
4-3-3 تولید اتانول و استات.. 129
4-3-4 بازده محصول. 133
4-4 مطالعات کینتیکی.. 135
4-4-1 کینتیک رشد سلول. 136
4-4-2 کینتیک مصرف سوبسترای گازی.. 145
4-4-3 بررسی کینتیک نرخ مصرف سوبسترای گازی و انتقال جرم. 147
4-4-4 کینتیک مصرف سوبسترا 152
4-5 آزمایشهای پیوسته تخمیر گاز سنتز در بیوراکتور 154
4-5-1 تاثیر نرخ رقیق سازی.. 154
4-5-1-1 دانسیته سلولی و pH محیط کشت.. 155
4-5-1-2 مصرف سوبسترای گازی.. 157
4-5-1-3 تولید محصول. 158
4-5-2 تاثیر شدت جریان گاز و دور همزن. 159
4-5-2-1 مصرف سوبسترای گازی.. 160
4-5-2-2 تولید محصول. 162
4-5-2-3 ضریب انتقال جرم در بیوراکتور 163
4-5-2-4 بازده محصول. 169
5 فصل پنجم: نتیجه گیری و پیشنهادات 172
5-1 نتیجه گیری از آزمایشها 172
5-2 ارائه پیشنهادات برای طرحهای آتی.. 175
پیوست الف... 177
پیوست ب.. 181
6 مراجع. 187
Abstract
منبع:
1
1- A. Eisentraut, Sustainable Production of Second-Generation Biofuels: Potential and perspectives in major economies and developing countries, IEA Energy Papers 2010.
2- S. Naik, V.V. Goud, P.K. Rout, A.K. Dalai, Production of first and second generation biofuels: A comprehensive review, Renewable Sustainable Energy Rev 14 2010 578-597.
3- J. Ruane, A. Sonnino, A. Agostini, Bioenergy and the potential contribution of agricultural biotechnologies in developing countries, Biomass Bioenergy 34 2010 1427-1439.
4- T.D. Foust, A. Aden, A. Dutta, S. Phillips, An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes, Cellulose 16 2009 547-565.
5- R.E.H. Sims, W. Mabee, J.N. Saddler, M. Taylor, An overview of second generation biofuel technologies, Bioresour Technol 101 2010 1570-1580.
6- T. Damartzis, A. Zabaniotou, Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review, Renewable Sustainable Energy Rev 15 2011 366-378.
7- A. Demirbas, Biofuels securing the planet's future energy needs, Energy Convers Manage 50 2009 2239-2249.
8- F. Demirbas, Biorefineries for biofuel upgrading: a critical review, Appl Energy 86 2009 S151-S161.
9- C. Piccolo, F. Bezzo, Ethanol from lignocellulosic biomass: a comparison between conversion technologies, Computer Aided Chemical Engineering 24 2007 1277-1282.
10- R.P. Datar, R.M. Shenkman, B.G. Cateni, R.L. Huhnke, R.S. Lewis, Fermentation of biomass-generated producer gas to ethanol, Biotechnol Bioeng 86 2004 587-594.
11- A. Ahmed, A.M. White, P. Hu, R.S. Lewis, R.L. Huhnke, Biofuels from Syngas.
12- M.J. Burk, C.H. Schilling, A.P. Burgard, J.D. Trawick, Methods and organisms for utililizing synthesis gas or other gaseous carbon sources and methanol, US Patent No. 7,803,589 2010.
13- Z.A.B.Z. Alauddin, P. Lahijani, M. Mohammadi, A.R. Mohamed, Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review, Renewable Sustainable Energy Rev 14 2010 2852-2862.
14- H.N. Abubackar, M.C. Veiga, C. Kennes, Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol, Biofuels, Bioprod Biorefin 5 2011 93-114.
15- C. Piccolo, F. Bezzo, A techno-economic comparison between two technologies for bioethanol production from lignocellulose, Biomass Bioenergy 33 2009 478-491.
16- J. Mackaluso, The use of syngas derived from biomass and waste products to produce ethanol and hydrogen, MMG 445 Basic Biotechnology eJournal 3 2007 98-103.
17- D.W. Choi, D.C. Chipman, S.C. Bents, R.C. Brown, A Techno-economic Analysis of Polyhydroxyalkanoate and Hydrogen Production from Syngas Fermentation of Gasified Biomass, Appl Biochem Biotechnol 160 2010 1032-1046.
18- L. Mississippi Ethanol. Final report from Mississippi Ethanol LLC to the National Renewable Energy Laboratory. Report NREL/SR-510-31720, NREL, Golden, CO (USA); 2002.
19- J. Abrini, H. Naveau, E.J. Nyns, Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide, Arch Microbiol 161 1994 345-351.
20- J.L. Gaddy, Biological production of ethanol from waste gases with Clostridium ljungdahlii, Us Patent No 6,136,577 2000.
21- J.H. Sim, A.H. Kamaruddin, W.S. Long, Biocatalytic conversion of CO to acetic acid by Clostridium aceticum--Medium optimization using response surface methodology (RSM), Biochem Eng J 40 2008 337-347.
22- M. Ackerson, E. Clausen, J. Gaddy. Biological conversion of synthesis gas. Arkansas Univ., Fayetteville, AR (United States). Coll. of Engineering; 1992.
23- D.K. Kundiyana, R.L. Huhnke, M.R. Wilkins, Syngas fermentation in a 100-L pilot scale fermentor: Design and process considerations, J Biosci Bioeng 109 2010 492-498.
24- M.D. Bredwell, P. Srivastava, R.M. Worden, Reactor Design Issues for Synthesis Gas Fermentations, Biotechnol Progr 15 1999 834-844.
25- G. Madhukar, B. Elmore, H. Huckabay, Microbial conversion of synthesis gas components to useful fuels and chemicals, Appl Biochem Biotechnol 57 1996 243-251.
26- D. Kim, I.S. Chang, Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology, Bioresour Technol 100 2009 4527-4530.
27- M.S. Elshahed, Microbiological aspects of biofuel production: Current status and future directions, J Adv Res 1 2010 103-111.
28- M. Koِpke, C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, A. Ehrenreich, W. Liebl, G. Gottschalk, P. Dürre, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proceedings of the National Academy of Sciences 107 2010 13087-13092.
29- M. Kِpke, C. Mihalcea, J.C. Bromley, S.D. Simpson, Fermentative production of ethanol from carbon monoxide, Curr Opin Biotechnol 22 2011 1-6.
30- J.L. Gaddy, G.J. Chen, Bioconversion of waste biomass to useful products, Us Patent No 5,821,111 1998.
31- G. Najafpour, H. Younesi, A.R. Mohamed, Bioconversion of waste gas into biofuel via fermentation in a continious stirred tank bioreactor, Malaysian Journal of Microbiology 1 2005 12-17.
32- H. Younesi, G. Najafpour, K.S. Ku Ismail, A.R. Mohamed, A.H. Kamaruddin, Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum, Bioresour Technol 99 2008 2612-2619.
33- G. Yeol Jung, J. Rae Kim, H. Ok Jung, J.Y. Park, S. Park, A new chemoheterotrophic bacterium catalyzing water-gas shift reaction, Biotechnol Lett 21 1999 869-873.
34- P.C. Maness, P.F. Weaver, Biological H2 from fuel gases and from H2O, Proceedings of the 2000 US Department of Energy Hydrogen Program Review 2000 9-11.
35- S. Robaire. Biological Hydrogen Production using Citrobacter amalonaticus Y19 to Catalyze the Water-Gas Shift Reaction. Chemical and Biological Engineering: The University of British Columbia; 2008.
36- G. Najafpour, H. Younesi, A. Mohamed, Continuous hydrogen production via fermentation of synthesis gas, Pet Coal 45 2003 154-158.
37- W. Mérida, P.C. Maness, R.C. Brown, D.B. Levin, Enhanced hydrogen production from indirectly heated, gasified biomass, and removal of carbon gas emissions using a novel biological gas reformer, Int J Hydrogen Energy 29 2004 283-290.
38- R.Y. Zhu, J.L. Li, Hydrogen metabolic pathways of Rhodospirillum rubrum under artificial illumination, Chin Sci Bull 55 2010 32-37.
39- P.C. Maness, P.F. Weaver, Hydrogen production from a carbon-monoxide oxidation pathway in Rubrivivax gelatinosus, Int J Hydrogen Energy 27 2002 1407-1411.
40- G. Najafpour, R. Basu, E. Clausen, J. Gaddy, Bioreactor Scale-Up for Water-Gas Shift Reaction, International Journal of Engineering 9 1996 121.
41- J. Phillips, K. Klasson, E. Clausen, J. Gaddy, Biological production of ethanol from coal synthesis gas, Appl Biochem Biotechnol 39 1993 559-571.
42- K. Braun, G. Gottschalk, Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum, Arch Microbiol 128 1981 294-298.
43- R. Kerby, J. Zeikus, Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source, Current Microbiology 8 1983 27-30.
44- S. Sakai, Y. Nakashimada, H. Yoshimoto, S. Watanabe, H. Okada, N. Nishio, Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22-1, Biotechnol Lett 26 2004 1607-1612.
45- K. Klasson, M. Ackerson, E. Clausen, J. Gaddy, Bioreactor design for synthesis gas fermentations, Fuel 70 1991 605-614.
46- R.S. Tanner, L.M. Miller, D. Yang, Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I, Int J Syst Bacteriol 43 1993 232-236.
47- W.H. Lorowitz, M.P. Bryant, Peptostreptococcus productus strain that grows rapidly with CO as the energy source, Appl Environ Microbiol 47 1984 961-964.
48- T.D. Allen, M.E. Caldwell, P.A. Lawson, R.L. Huhnke, R.S. Tanner, Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil, Int J Syst Evol Microbiol 60 2010 2483-2489.
49- J.S.C. Liou, D.L. Balkwill, G.R. Drake, R.S. Tanner, Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov, Int J Syst Evol Microbiol 55 2005 2085.
50- A. Grethlein, R. Worden, M. Jain, R. Datta, Continuous production of mixed alcohols and acids from carbon monoxide, Appl Biochem Biotechnol 24 1990 875-884.
51- S. Rajagopalan, Formation of ethanol from carbon monoxide via a new microbial catalyst, Biomass Bioenergy 23 2002 493-487.
52- S. Chatterjee, A.J. Grethlein, R. Mark Worden, M.K. Jain, Evaluation of support matrices for an immobilized cell gas lift reactor for fermentation of coal derived synthesis gas, J Ferment Bioeng 81 1996 158-162.
53- G. Bruant, M.J. Lévesque, C. Peter, S.R. Guiot, L. Masson, N. Ahmed, Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T, PloS one 5 2010 1-12.
54- R.S. Lewis, R.S. Tanner, R.L. Huhnke, Indirect or direct fermentation of biomass to fuel alcohol, Us Patent Pub No 2007/0275447 A1 2006.
55- H. Heiskanen, I. Virkajärvi, L. Viikari, The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum, Enzyme Microb Technol 41 2007 362-367.
56- A. Amos, Biological Water-Gas Shift Conversion of Carbon Monoxide to Hydrogen, Milestone Completion Report, National Renewable Energy Laboratory (NREL) MP-560-35592 2004.
57- D. Antoni, V.V. Zverlov, W.H. Schwarz, Biofuels from microbes, Appl Microbiol Biotechnol 77 2007 23-35.
58- Y.K. Oh, Y.J. Kim, J.Y. Park, T.H. Lee, M.S. Kim, S. Park, Biohydrogen production from carbon monoxide and water by Rhodopseudomonas palustris P4, Biotechnol Bioprocess Eng 10 2005 270-274.
59- G.Y. Jung, J.R. Kim, J.Y. Park, S. Park, Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19, Int J Hydrogen Energy 27 2002 601-610.
60- E. Oelgeschlager, M. Rother, Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea, Arch Microbiol 190 2008 257-269.
61- G. Najafpour, H. Younesi, A.R. Mohamed, A survey on various carbon sources for biological hydrogen production via the water-gas reaction using a photosynthetic bacterium (Rhodospirillum rubrum), Energy Sources Part A 28 2006 1013-1026.
62- G. Najafpour, K.S.K. Ismail, H. Younesi, A. Mohamed, A. Harun, Performance of biological hydrogen production process from synthesis gas, mass transfer in batch and continuous bioreactors, Int J Eng Trans B 17 2004 105-120.
63- K. Syahidah, K. Ismail, N. Ghasem, Y. Habibollah, H.K. Azlina, Biological hydrogen production from CO: Bioreactor performance, Biochem Eng J 39 2008 468-477.
64- E. Wolfrum, P. Weaver. Bioreactor development for biological hydrogen production. 2000.
65- S.A. Markov, P.F. Weaver, Bioreactors for H2 Production by Purple Nonsulfur Bacteria, Appl Biochem Biotechnol 145 2008 79-86.
66- S.A. Markov, Bioreactors for Hydrogen Production, Biohydrogen 1999 383-390.
67- K. Klasson, A. Gupta, E. Clausen, J. Gaddy, Evaluation of mass-transfer and kinetic parameters for Rhodospirillum rubrum in a continuous stirred tank reactor, Appl Biochem Biotechnol 39 1993 549-557.
68- P. Maness, K. Magrini, S. Smolinski, A. Dillon, M. Heben, P. Weaver, Applications of a biological water-gas shift reaction using unique photosynthetic bacteria.
69- G. Najafpour, K.S.K. Ismail, H. Younesi, A.R. Mohamed, A.H. Kamaruddin, Hydrogen as clean fuel via continuous fermentation by anaerobic photosynthetic bacteria, Rhodospirillum rubrum, Afr J Biotechnol 3 2004 503-507.
70- G. Najafpour, H. Younesi, Bioconversion of synthesis gas to hydrogen using a light-dependent photosynthetic bacterium, Rhodospirillum rubrum, World Journal of Microbiology and Biotechnology 23 2007 275-284.
71- G.Y. Jung, H.O. Jung, J.R. Kim, Y. Ahn, S. Park, Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2, Biotechnol Lett 21 1999 525-529.
72- Y.Q. Nie, H. Liu, G.C. Du, J. Chen, Acetate yield increased by gas circulation and fed-batch fermentation in a novel syntrophic acetogenesis and homoacetogenesis coupling system, Bioresour Technol 99 2008 2989-2995.
73- B.J. Ni, H. Liu, Y.Q. Nie, R.J. Zeng, G.C. Du, J. Chen, H.Q. Yu, Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches, Biotechnol Bioeng 108 2010 345-353.
74- G. Diekert, G. Wohlfarth, Metabolism of homoacetogens, Antonie van Leeuwenhoek 66 1994 209-221.
75- J.H. Sim, A.H. Kamaruddin, W.S. Long, G. Najafpour, Clostridium aceticum--A potential organism in catalyzing carbon monoxide to acetic acid: Application of response surface methodology, Enzyme Microb Technol 40 2007 1234-1243.
76- J.H. Sim. Bioconversion of carbon monoxide gas to acetic acid using clostridium aceticum in batch and continous fermentations [TP248. A18 S588 2006 f rb]. Universiti Sains Malaysia; 2006.
77- S. Sakai, Y. Nakashimada, K. Inokuma, M. Kita, H. Okada, N. Nishio, Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture, J Biosci Bioeng 99 2005 252-258.
78- J.L. Gaddy, E.C. Clausen, Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism, Us Patent No 5,173,429 1992.
79- J.L. Cotter, M.S. Chinn, A.M. Grunden, Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas, Enzyme Microb Technol 44 2009 281-288.
80- Y. Guo, J. Xu, Y. Zhang, H. Xu, Z. Yuan, D. Li, Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source, Bioresour Technol 101 2010 8784-8789.
81- R. Worden, A. Grethlein, J. Zeikus, R. Datta, Butyrate production from carbon monoxide by Butyribacterium methylotrophicum, Appl Biochem Biotechnol 20 1989 687-698.
82- H. Younesi, G. Najafpour, A.R. Mohamed, Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii, Biochem Eng J 27 2005 110-119.
83- D.K. Kundiyana, R.L. Huhnke, P. Maddipati, H.K. Atiyeh, M.R. Wilkins, Feasibility of Incorporating Cotton Seed Extract in Clostridium strain P11 Fermentation Medium During Synthesis Gas Fermentation, Bioresour Technol 101 2010 9673-9680.
84- I.S. Chang, B.H. Kim, D.H. Kim, R.W. Lovitt, H.C. Sung, Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium, J Biosci Bioeng 88 1999 682-685.
85- I. Chang, D. Kim, B.H. Kim, P.K. Shin, H. Sung, R.W. Lovitt, CO fermentation of Eubacterium limosum KIST612, J Microbiol Biotechnol 8 1998 134-140.
86- J.R. Phillips, E.C. Clausen, J.L. Gaddy, Synthesis gas as substrate for the biological production of fuels and chemicals, Appl Biochem Biotechnol 45 1994 145-157.
87- D.K. Kundiyana, M.R. Wilkins, P. Maddipati, R.L. Huhnke, Effect of temperature, pH and buffer presence on ethanol production from synthesis gasby, Bioresour Technol 2011.
88- M. Kopke, C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, A. Ehrenreich, W. Liebl, G. Gottschalk, P. Dürre, Clostridium ljungdahlii represents a microbial production platform based on syngas, Proceedings of the National Academy of Sciences 107 2010 13087-13092.
89- H.L. Drake, S.L. Daniel, Physiology of the thermophilic acetogen Moorella thermoacetica, Res Microbiol 155 2004 422-436.
90- P.C. Munasinghe, S.K. Khanal, Biomass-derived syngas fermentation into biofuels: Opportunities and challenges, Bioresour Technol 101 2010 5013-5022.
91- A.M. Henstra, J. Sipma, A. Rinzema, A.J.M. Stams, Microbiology of synthesis gas fermentation for biofuel production, Curr Opin Biotechnol 18 2007 200-206.
92- L. Ljungdhal, The autotrophic pathway of acetate synthesis in acetogenic bacteria, Annual Reviews in Microbiology 40 1986 415-450.
93- J.L. Cotter, M.S. Chinn, A.M. Grunden, Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells, Bioprocess Biosyst Eng 32 2009 369-380.
94- P.C. Maness, P.F. Weaver, Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium, Appl Biochem Biotechnol 45 1994 395-406.
95- Y.S. Do, J. Smeenk, K.M. Broer, C.J. Kisting, R. Brown, T.J. Heindel, T.A. Bobik, A.A. DiSpirito, Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H2 and poly--hydroxyalkanoate, Biotechnol Bioeng 97 2007 279-286.
96- O. Tirado-Acevedo. Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii as a Microbial Catalyst. North Carolina State University; 2010.
97- G. Najafpour, H. Younesi, K. Ismail, A. Mohamed, A. Kamaruddin, Photobiological Hydrogen Production from Synthesis Gas: Carbon Sources, KLa and Kinetics Evaluation, Developments in Chemical Engineering and Mineral Processing 13 2005 549-562.
98- M.P. Devi, S.V. Mohan, G. Mohanakrishna, P. Sarma, Regulatory influence of CO2 supplementation on fermentative hydrogen production process, Int J Hydrogen Energy 35 2010 10701-10709.
99- J.H. Sim, A.H. Kamaruddin, Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium-Clostridium aceticum using statistical approach, Bioresour Technol 99 2008 2724-2735.
100- J. Wiegel, R. Tanner, F.A. Rainey, An introduction to the family of Clostridiaceae, The Prokaryotes 2 2006 654–678.
101- P. Hu, L.T. Jacobsen, J.G. Horton, R.S. Lewis, Sulfide assessment in bioreactors with gas replacement, Biochem Eng J 49 2010 429-434.
102- J. Saxena, R.S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei, J Ind Microbiol Biotechnol 2010.
103- R.L. Huhnke, R.S. Lewis, R.S. Tanner, Isolation and characterization of novel clostridial species, Us Patent Pub No 2010/0203606 A1 2010.
104- S.S. Adams, S. Scott, C. Ko. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates. US Patent App. 20,100/227,377; 2010.
105- G. Najafpour, H. Younesi, A.R. Mohamed, Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture, Biochem Eng J 21 2004 123-130.
106- A. Ahmed, R.S. Lewis, Fermentation of biomass generated synthesis gas: Effects of nitric oxide, Biotechnol Bioeng 97 2007 1080-1086.
107- A.J. Ungerman, T.J. Heindel, Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations, Biotechnol Progr 23 2007 613-620.
108- P.C. Munasinghe, S.K. Khanal, Syngas fermentation to biofuel: Evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations, Biotechnol Progr 2010.
109- K. Klasson, J. Cowger, C. Ko, J. Vega, E. Clausen, J. Gaddy, Methane production from synthesis gas using a mixed culture of R. rubrum M. barkeri, and M. formicicum, Appl Biochem Biotechnol 24 1990 317-328.
110- H. Zhu, B.H. Shanks, T.J. Heindel, Enhancing CO-Water Mass Transfer by Functionalized MCM41 Nanoparticles, Ind Eng Chem Res 47 2008 7881-7887.
111- H. Zhu, B.H. Shanks, D.W. Choi, T.J. Heindel, Effect of functionalized MCM41 nanoparticles on syngas fermentation, Biomass Bioenergy 34 2010 1624-1627.
112- J. Vega, S. Prieto, B. Elmore, E. Clausen, J. Gaddy, The biological production of ethanol from synthesis gas, Appl Biochem Biotechnol 20 1989 781-797.
113- I.S. Chang, B.H. Kim, R.W. Lovitt, J.S. Bang, Effect of CO partial pressure on cell-recycled continuous CO fermentation by Eubacterium limosum KIST612, Process Biochem 37 2001 411-421.
114- K.M. Hurst, R.S. Lewis, Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation, Biochem Eng J 48 2010 159-165.
115- G. Najafpour, H. Younesi, Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii, Enzyme Microb Technol 38 2006 223-228.
116- D. G. Peacock, J.F. Richardson, Chemical and Biochemical Reactors & Process Control, Vol. 3, 3rd Ed., 1999 Elsevier Science & Technology
117- S. Wang, Y. Zhang, H. Dong, S. Mao, Y. Zhu, R. Wang, G. Luan, Y. Li, Formic Acid Triggers the" Acid Crash" of Acetone-Butanol-Ethanol Fermentation by Clostridium acetobutylicum, Appl Environ Microbiol 77 2011 1674-1680.
118- P. Hols, A. Ramos, J. Hugenholtz, J. Delcour, W.M. De Vos, H. Santos, M. Kleerebezem, Acetate utilization in Lactococcus lactis deficient in lactate dehydrogenase: a rescue pathway for maintaining redox balance, J Bacteriol 181 1999 5521-5526.
119- T. Ezeji, N. Qureshi, H. Blaschek, Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping, Appl Microbiol Biotechnol 63 2004 653-658.
120- I. Maddox, E. Steiner, S. Hirsch, S. Wessner, N. Gutierrez, J. Gapes, K. Schuster, The Cause of "Acid Crash" and "Acidogenic Fermentations" During the Batch Acetone-Butanol-Ethanol(ABE-) Fermentation Process, J Mol Microbiol Biotechnol 2 2000 95-100.
121- M.H. Hansen, K. Ingvorsen, B.B. Jorgensen, Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere, Limnology and Oceanography 1978 68-76.
122- J.E. Bailey, D.F. Ollis, Biochemical engineering fundamentals, 2nd edition, McGraw-Hill, New York, 1986.
123- J.L. Vega, V.L. Holmberg, E.C. Clausen, J.L. Gaddy, Fermentation parameters of Peptostreptococcus productus on gaseous substrates (CO, H2/CO2), Archives of microbiology 151 1988 65-70.
124- J. Luong, Generalization of Monod kinetics for analysis of growth data with substrate inhibition, Biotechnology and bioengineering 29 1987 242-248.
125- F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview, Biotechnology advances 27 2009 153-176.
126- J.C. Gabelle, F. Augier, A. Carvalho, R. Rousset, J. Morchain, Effect of tank size on kLa and mixing time in aerated stirred reactors with non-newtonian fluids, The Canadian Journal of Chemical Engineering 89 2011 1139-1153.
127- G.D. Najafpour. Biochemical engineering and biotechnology, Amsterdam, Elsevier Science; 2006.
128- Geankoplis, C.J. Transport Processes and Separation Process Principles. Fourth Edition. 2003 New Jersey: Prentice Hall