فهرست:
فصل اول: مقدمه و تئوری تحقیق... 1
1-1 مقدمه. 1
1-2 انواع جذب... 3
1-3 طبیعت جاذبها 4
1-4 جاذبها 4
1-5 عوامل تأثیرگذار بر روی قدرت جذب یک جاذب... 5
1-5-1 سطح تماس.... 5
1-5-2 غلظت... 7
1-5-3 دما 7
1-5-4 نوع ماده جذب شده و جاذب... 7
1-5-5 حالت ماده جذب شده و جاذب... 7
1-6 ذغالهای رنگ بر. 7
1-7 کربن فعال.. 8
1-8 روشهای فعالسازی.. 9
1-8-1 روش فعالسازی فیزیکی.. 9
1-8-2 روش فعالسازی شیمیایی: 10
1-9 تئوری رنگها و جذب رنگ... 12
1-10 اساس کار دستگاه اسپکتروسکوپ... 13
1-10-1 اسپکتروفتومتر نور مرئی.. 13
1-10-2 اجزاء دستگاه 13
1-10-3 طرز تعیین غلظت یک ماده توسط اسپکتروفتومتر. 15
1-11 رنگها و خواص آنها 16
1-11-1 رنگهای اسیدی یا آنیونی.. 16
1-11-2 رنگهای بازی یا کاتیونی.. 16
1-11-3 رنگهای خنثی.. 17
1-12 ایزوترمهای جذب... 18
1-12-1 ایزوترم فرندلیچ.. 18
1-12-2 مدلایزوترم لانگمیر. 19
1-12-3 مدلایزوترم BET.. 20
1-12-4 مدلایزوترم دوبین-رادوشکویچ.. 21
1-12-5 ایزوترم تمکین.. 22
1-12-6 مدلایزوترم توس.... 22
1-12-7 مدلایزوترم سیپز. 22
1-12-7 رادکه-پراودنیتز. 23
1-13 تخمین پارامترهایایزوترم جذب با استفاده از خطیسازی: 23
1-14 تصفیه آب... 24
1-15 جذب سطحی.. 24
1-16 کاربردهای فرآیند جذب سطحی در صنعت تصفیه آب... 26
1-17 اهداف تحقیق.. 27
فصل دوم: مروری بر سوابق مطالعاتی و پژوهشی... 29
2-1 مروری بر تحقیقات انجام شده در حذف آلاینده، بخصوص رنگها از محیطهای آبی.. 29
2-2 انواع جاذبها 30
2-2-1 استفاده از جاذبهای سنتزی.. 30
2-2-2 استفاده از جاذبهای طبیعی.. 31
2-3 حذف رنگهای کاتیونی و آنیونی.. 32
2-4 روشهای تبدیل مواد به جاذب کربنی.. 34
2-5 نانوبیوکامپوزیت سلولز باکتریایی/سیلیکا جایگزین سلولزهای گیاهی.. 38
2-6 استفاده از جاذبهای گیاهی و ارزان قیمت به جای جاذبهای گران.. 39
فصل سوم: مواد و روشها 41
3-1 جاذب به کار رفته برای جذب دراین تحقیق.. 41
3-2 ترکیبات شیمیایی.. 42
3-3 فرمول شیمیایی آلایندهی رنگی به کار رفته. 42
3-4 شکل مولکولی.. 43
3-5 نانو فیبر سلولز. 43
3-6 شرایط آزمایشگاه : 45
3-7 تجهیزات و دستگاهها 46
3-8 مواد لازم. 46
3-9 روش آمادهسازی جاذب... 48
3-9-1 تهیهی جاذب و مش بندی آن.. 48
3-9-2 تهیه جاذب خاکشیر در ابعاد نانو با استفاده از آسیاب فوق ریز کنندهی دیسکی.. 48
3-10 تهیهی محلول رنگ به عنوان پساب رنگی.. 49
3-11 مراحل بهینهکردن جذب... 50
3-12 بررسیهای جاذب به کار رفته. 50
3-13-1 شکل شناسی ذرات(ریخت شناسی) 50
3-13-2 بررسی گونههای موجود در ساختار با استفاده از آزمون FTIR.. 51
3-13-3 روش جداسازی رنگ بریلیانتگرین.. 51
3-13-4 روش تعیین غلظت رنگ در محیط آبی.. 52
3-13 روش محاسبهی میزان حذف.. 53
3-14بررسی و تعیینایزوترم یاایزوترمهای جذبی حاکم بر فرآیند جذب... 54
3-15 بررسی سنتیک جذب... 54
3-16-1 مدل سنتیک شبه درجه اول.. 54
3-16-2 مدل سنتیک شبه درجه دوم. 55
3-16-3 مدل سنتیک نفوذ درون ذرهای.. 56
3-16-4 مدل سنتیک بنگهام. 56
فصل چهارم: نتایج آزمایشگاهی... 57
4-1 بهینهکردن جاذب... 57
4-1-1 انتخاب pH بهینه. 57
4-1-2 زمان تماس.... 59
4-1-3 مقدار گرم جاذب(دُز جاذب) 60
4-1-4 غلظت اولیهی محلول.. 62
4-1-5 بررسی دما 63
4-1-6 دور همزن.. 64
4-1-7 اسیدیکردن جاذب... 65
4-1-8 تأثیر اندازه جاذب بر میزان حذف.. 66
4-2 ایزوترمهای حاکم بر فرآیند جذب... 67
4-2-1 مدل فرندلیچ.. 67
4-2-2 مدلایزوترم لانگمیر. 68
4-2-3 ایزوترم تمکین.. 70
4-2-4 نانوژل و جداسازی آن از محیط آبی پس از فرآیند حذف.. 71
4-3 شکلشناسی (شکلشناسی یا ریختشناسی جاذب) 72
4-4 آزمایش FTIR برای بررسی گونههای موجود در ساختمان شیمیایی جاذب... 78
4-5 تخمین پارامترهای ترمودینامیکی.. 82
4-5-1 مدل سنتیک شبه درجه اول.. 82
4-5-2 مدل سنتیک شبه درجه دوم. 82
4-5-3 مدل نفوذ درون ذرهای.. 83
4-5-4 مدل بنگهام. 84
4-6 مقایسه جداسازی رنگ بریلیانتگرین از محلول آبی با استفاده از جاذبهای مشابه با شرایط یکسان.. 86
4-7 بررسی مقاومتهای انتقال جرم. 87
فصل پنجم: نتیجهگیری و پیشنهادات... 90
5-1 نتیجهگیری.. 90
5-2 پیشنهادت... 92
مراجع: 93
پیوست 1. فهرست اسامیلاتین.. 100
پیوست 2. کالیبراسیون دستگاه اسپکتروفوتومتر. 103
پیوست 3. شبیه سازی جذب... 104
پیوست 4. گرمای جذب و تغییرات انرژی آزاد گیبس و تغییرات آنتروپی 105
منبع:
[1] V. K. Gupta and Suhas, "Application of low-cost adsorbents for dye removal--a review," J Environ Manage, vol. 90, pp. 2313-42, Jun 2009.
[2] T. Robinson, B. Chandran, and P. Nigam, "Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corncob and barley husk," Environ Int, vol. 28, pp. 29-33, 2002.
[3] B. Crittenden and W. J. Thomas, Adsorption Technology & Design: Elsevier Science, 1998.
[4] S. D. Faust and O. M. Aly, Adsorption processes for water treatment: Butterworth, 1987.
[5] M. Suzuki, Adsorption engineering: Kodansha, 1990.
[6] T. G. M. van de Ven, K. Saint-Cyr, and M. Allix, "Adsorption of toluidine blue on pulp fibers," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 294, pp. 1-7, 2007.
[7] T.-Q. Yuan and R.-C. Sun, "Chapter 7.3 - Modification of Straw for Activated Carbon Preparation and Application for the Removal of Dyes from Aqueous Solutions," in Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, ed Amsterdam: Elsevier, 2010, pp. 239-252.
[8] B. Bird, W. Stewart, and E. Lightfoot, Transport Phenomena, Revised 2nd Edition: John Wiley & Sons, Inc., 2006.
[9] Y. Matsui, N. Ando, T. Yoshida, R. Kurotobi, T. Matsushita, and K. Ohno, "Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon," Water Res, vol. 45, pp. 1720-8, Feb 2011.
[10] R. E. Treybal, Mass-transfer operations: McGraw-Hill, 1980.
[11] M. Toor and B. Jin, "Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye," Chemical Engineering Journal, vol. 187, pp. 79-88, 2012.
[12] H. Treviño-Cordero, L. G. Juárez-Aguilar, D. I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet, and M. A. Montes-Morán, "Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water," Industrial Crops and Products, vol. 42, pp. 315-323, 2013.
[13] I. Ali, M. Asim, and T. A. Khan, "Low cost adsorbents for the removal of organic pollutants from wastewater," Journal of Environmental Management, vol. 113, pp. 170-183, 2012.
[14] M. S. Sajab, C. H. Chia, S. Zakaria, and P. S. Khiew, "Cationic and anionic modifications of oil palm empty fruit bunch fibers for the removal of dyes from aqueous solutions," Bioresour Technol, vol. 128, pp. 571-577, 2013.
[15] P. S. Suchithra, L. Vazhayal, A. Peer Mohamed, and S. Ananthakumar, "Mesoporous organic-inorganic hybrid aerogels through ultrasonic assisted sol-gel intercalation of SiO2-PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution," Chemical Engineering Journal.
[16] م. سعیدی, "بررسی جذب فنل از آب آلوده به کمککربن فعال و کربن پوست بادام و گردو," علوم و تکنولوژی محیط زیست, vol. 10, زمستان 87 1387.
[17] F. A. Batzias and D. K. Sidiras, "Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems," J Hazard Mater, vol. 149, pp. 8-17, Oct 1 2007.
[18] ر. ع. زاده and س. م. برقعی, "استفاده از کربن فعال گرانولی در فرآیند کربن زیستی به منظور حذف مواد آلی و رنگ پساب های صنایع نساجی," مهندسی شیمیایران, vol. 2, 1387.
[19] C. Bauer, P. Jacques, and A. Kalt, "Photooxidation of an azo dye induced by visible light incident on the surface of TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 140, pp. 87-92, 4/13/ 2001.
[20] M. Arami, N. Y. Limaee, N. M. Mahmoodi, and N. S. Tabrizi, "Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull," Journal of Hazardous Materials, vol. 135, pp. 171-179, 2006.
[21] M. Asadullah, M. Asaduzzaman, M. S. Kabir, M. G. Mostofa, and T. Miyazawa, "Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution," Journal of Hazardous Materials, vol. 174, pp. 437-443, 2010.
[22] A. Mittal, J. Mittal, A. Malviya, and V. K. Gupta, "Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption," Journal of Colloid and Interface Science, vol. 340, pp. 16-26, 2009.
[23] A. P. Vieira, S. A. A. Santana, C. W. B. Bezerra, H. A. S. Silva, J. A. P. Chaves, J. C. P. Melo, et al., "Removal of textile dyes from aqueous solution by babassu coconut epicarp (Orbignya speciosa)," Chemical Engineering Journal, vol. 173, pp. 334-340, 2011.
[24] V. V. Panic, Z. P. Madzarevic, T. Volkov-Husovic, and S. J. Velickovic, "Poly(methacrylic acid) based hydrogels as sorbents for removal of cationic dye basic yellow 28: Kinetics, equilibrium study and image analysis," Chemical Engineering Journal, vol. 217, pp. 192-204, 2013.
[25] ش. س and ق. ک. گ, "استفاده از فرآیند جذب سطحی در تصفیه آب," نشریه علمی فنی واجتماعی آب و محیط زیست, vol. 20, 1375.
[26] T. L. Bergman, F. P. Incropera, A. S. Lavine, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer: Wiley, 2011.
[27] "8-Specialised and advanced water treatment processes," in Water Supply (Fifth Edition), C. T. Alan, Bsc, Fice, Fciwem, D. R. Don, Dic, et al., Eds., ed London: Butterworth-Heinemann, 2000, pp. 370-XX.
[28] "استاندارد خروجی فاضلاب ها," د. م. ز. انسانی, Ed., ed.ایران: سازمان محیط زیست کشور-معاونت تحقیقاتی, 1373.
[29] I. Bazin, A. Ibn Hadj Hassine, Y. Haj Hamouda, W. Mnif, A. Bartegi, M. Lopez-Ferber, et al., "Estrogenic and anti-estrogenic activity of 23 commercial textile dyes," Ecotoxicology and Environmental Safety.
[30] E. Forgacs, T. Cserhati, and G. Oros, "Removal of synthetic dyes from wastewaters: a review," Environ Int, vol. 30, pp. 953-71, Sep 2004.
[31] C. I. Pearce, J. R. Lloyd, and J. T. Guthrie, "The removal of colour from textile wastewater using whole bacterial cells: a review," Dyes and Pigments, vol. 58, pp. 179-196, 2003.
[32] V. Naghashi, M. Parvini, and S. H. Zavvar Mousavi Niaki, "Application of low cost Adsorbents for Cationic Dye removal, A review " The first National Conference of new technologies in chemical and chemical engineering, vol. 1, pp. 212-224, 2012.
[33] V. S. Mane, I. Deo Mall, and V. Chandra Srivastava, "Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash," Journal of Environmental Management, vol. 84, pp. 390-400, 2007.
[34] J.-S. Wu, C.-H. Liu, K. H. Chu, and S.-Y. Suen, "Removal of cationic dye methyl violet 2B from water by cation exchange membranes," Journal of Membrane Science, vol. 309, pp. 239-245, 2008.
[35] S. Wang, H. Li, S. Xie, S. Liu, and L. Xu, "Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment," Chemosphere, vol. 65, pp. 82-87, 2006.
[36] G. Ji, W. Bao, G. Gao, B. An, H. Zou, and S. Gan, "Removal of Cu (II) from Aqueous Solution Using a Novel Crosslinked Alumina-Chitosan Hybrid Adsorbent," Chinese Journal of Chemical Engineering, vol. 20, pp. 641-648, 2012.
[37] N. M. Mahmoodi, F. Najafi, and A. Neshat, "Poly (amidoamine-co-acrylic acid) copolymer: Synthesis, characterization and dye removal ability," Industrial Crops and Products, vol. 42, pp. 119-125, 2013.
[38] V. Sivasankar, S. Rajkumar, S. Murugesh, and A. Darchen, "Tamarind (Tamarindus indica) fruit shell carbon: A calcium-rich promising adsorbent for fluoride removal from groundwater," Journal of Hazardous Materials, vol. 225–226, pp. 164-172, 2012.
[39] M. Visa, "Tailoring Fly Ash activated with Bentonite as adsorbent for Complex Wastewater treatment," Applied Surface Science.
[40] J. Sánchez-Martín, J. Beltrán-Heredia, and J. Gragera-Carvajal, "Caesalpinia spinosa and Castanea sativa tannins: A new source of biopolymers with adsorbent capacity. Preliminary assessment on cationic dye removal," Industrial Crops and Products, vol. 34, pp. 1238-1240, 2011.
[41] S. Dawood and T. K. Sen, "Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design," Water Research, vol. 46, pp. 1933-1946, 2012.
[42] M. C. Somasekhara Reddy, L. Sivaramakrishna, and A. Varada Reddy, "The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium," Journal of Hazardous Materials, vol. 203–204, pp. 118-127, 2012.
[43] M. R. Perez-Gregorio, M. S. Garcia-Falcon, E. Martinez-Carballo, and J. Simal-Gandara, "Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes," J Hazard Mater, vol. 178, pp. 273-81, Jun 15 2010.
[44] E. Alver and A. Ü. Metin, "Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies," Chemical Engineering Journal, vol. 200–202, pp. 59-67, 2012.
[45] Y. Li, B. Gao, T. Wu, B. Wang, and X. Li, "Adsorption properties of aluminum magnesium mixed hydroxide for the model anionic dye Reactive Brilliant Red K-2BP," J Hazard Mater, vol. 164, pp. 1098-104, May 30 2009.
[46] M. Yagub, T. Sen, and H. M. Ang, "Removal of organic contaminants by natural pine cone and pine leaves as adsorbent," 2011.
[47] A. S. Franca, L. S. Oliveira, and M. E. Ferreira, "Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds," Desalination, vol. 249, pp. 267-272, 11/30/ 2009.
[48] G. O. El-Sayed, "Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber," Desalination, vol. 272, pp. 225-232, 5/3/ 2011.
[49] Y. Bulut and H. Aydın, "A kinetics and thermodynamics study of methylene blue adsorption on wheat shells," Desalination, vol. 194, pp. 259-267, 6/10/ 2006.
[50] D. Kavitha and C. Namasivayam, "Experimental and kinetic studies on methylene blue adsorption by coir pith carbon," Bioresource Technology, vol. 98, pp. 14-21, 1// 2007.
[51] Y. C. Sharma, Uma, and S. N. Upadhyay, "Removal of a Cationic Dye from Wastewaters by Adsorption on Activated Carbon Developed from Coconut Coir," Energy & Fuels, vol. 23, pp. 2983-2988, 2009/06/18 2009.
[52] G. Annadurai, R.-S. Juang, and D.-J. Lee, "Use of cellulose-based wastes for adsorption of dyes from aqueous solutions," Journal of Hazardous Materials, vol. 92, pp. 263-274, 2002.
[53] G. McKay, G. Ramprasad, and P. Pratapa Mowli, "Equilibrium studies for the adsorption of dyestuffs from aqueous solutions by low-cost materials," Water, Air, and Soil Pollution, vol. 29, pp. 273-283, 1986/07/01 1986.
[54] F. Ferrero, "Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust," Journal of Hazardous Materials, vol. 142, pp. 144-152, 2007.
[55] U. J. Etim, S. A. Umoren, and U. M. Eduok, "Coconut Coir Dust as A Low Cost Adsorbent for the Removal of Cationic Dye from Aqueous Solution," Journal of Saudi Chemical Society, 2012.
[56] V. S. Mane, I. D. Mall, and V. C. Srivastava, "Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution," Dyes and Pigments, vol. 73, pp. 269-278, 2007.
[57] Y. Kismir and A. Z. Aroguz, "Adsorption characteristics of the hazardous dye Brilliant Green on Saklıkent mud," Chemical Engineering Journal, vol. 172, pp. 199-206, 2011.
[58] V. S. Mane and P. V. V. Babu, "Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust," Desalination, vol. 273, pp. 321-329, 2011.
[59] S. R. Shirsath, A. P. Patil, R. Patil, J. B. Naik, P. R. Gogate, and S. H. Sonawane, "Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study," Ultrasonics Sonochemistry, 2012.
[60] M. Ghaedi, S. Hajati, B. Barazesh, F. Karimi, and G. Ghezelbash, "Saccharomyces cerevisiae for the biosorption of basic dyes from binary component systems and the high order derivative spectrophotometric method for simultaneous analysis of Brilliant green and Methylene blue," Journal of Industrial and Engineering Chemistry, vol. 19, pp. 227-233, 2013.
[61] B. K. Nandi, A. Goswami, and M. K. Purkait, "Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies," Applied Clay Science, vol. 42, pp. 583-590, 2009.
[62] Y. Khambhaty, K. Mody, and S. Basha, "Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: Kinetics, equilibrium and process design," Ecological Engineering, vol. 41, pp. 74-83, 2012.
[63] N. Gupta, A. K. Kushwaha, and M. C. Chattopadhyaya, "Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder," Journal of the Taiwan Institute of Chemical Engineers, vol. 43, pp. 604-613, 2012.
[64] A. Bhatnagar and M. Sillanpää, "Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review," Chemical Engineering Journal, vol. 157, pp. 277-296, 2010.
[65] R. Dastjerdi and M. Montazer, "A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties," Colloids and Surfaces B: Biointerfaces, vol. 79, pp. 5-18, 2010.
[66] C. P. Poole and F. J. Owens, Introduction to Nanotechnology: John Wiley & Sons, 2003.
[67] ستاد, ویژه, توسعه, فناوری, and نانو, "ستاد ویژه توسعه فناوری نانو," Polymers, vol. 90, pp. 413-418, 2012, Sep.
[68] M. F. Abou Taleb, D. E. Hegazy, and S. A. Ismail, "Radiation synthesis, characterization and dye adsorption of alginate–organophilic montmorillonite nanocomposite," Carbohydrate Polymers, vol. 87, pp. 2263-2269, 2012.
[69] N. Gupta, A. K. Kushwaha, and M. C. Chattopadhyaya, "Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution," Journal of the Taiwan Institute of Chemical Engineers, vol. 43, pp. 125-131, 2012.
[70] D. H. Yousefi, "Nano Novin Polymer Product list," Nano Novin Polymer Science base Co, Sari-Mazandaran, Iran2011.
[71] N. M. Mahmoodi, B. Hayati, M. Arami, and C. Lan, "Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies," Desalination, vol. 268, pp. 117-125, 2011.
[72] N. M. Mahmoodi, F. Najafi, S. Khorramfar, F. Amini, and M. Arami, "Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer," Journal of Hazardous Materials, vol. 198, pp. 87-94, 2011.
[73] N. M. Mahmoodi, B. Hayati, and M. Arami, "Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer," Industrial Crops and Products, vol. 35, pp. 295-301, 2012.
[74] N. M. Mahmoodi and F. Najafi, "Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability," Materials Research Bulletin, vol. 47, pp. 1800-1809, 2012.
[75] C. P. Kaushik, R. Tuteja, N. Kaushik, and J. K. Sharma, "Minimization of organic chemical load in direct dyes effluent using low cost adsorbents," Chemical Engineering Journal, vol. 155, pp. 234-240, 2009.
[76] H. Ramadan, A. Ghanem, and H. El-Rassy, "Mercury removal from aqueous solutions using silica, polyacrylamide and hybrid silica-polyacrylamide aerogels," Chemical Engineering Journal, vol. 159, pp. 107-115, 2010.
[77] N. Kannan and M. M. Sundaram, "Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study," Dyes and pigments, vol. 51, pp. 25-40, 2001.
[78] V. J. P. Poots, G. McKay, and J. J. Healy, "The removal of acid dye from effluent using natural adsorbents—I peat," Water Research, vol. 10, pp. 1061-1066, 1976.
[79] V. J. P. Poots, G. McKay, and J. J. Healy, "The removal of acid dye from effluent using natural adsorbents—II Wood," Water Research, vol. 10, pp. 1067-1070, 1976.
[80] C. Namasivayam and N. Kanchana, "Waste banana pith as adsorbent for color removal from wastewaters," Chemosphere, vol. 25, pp. 1691-1705, 1992.
[81] V. K. Gupta, A. Mittal, L. Kurup, and J. Mittal, "Adsorption of a hazardous dye, erythrosine, over hen feathers," Journal of Colloid and Interface Science, vol. 304, pp. 52-57, 12/1/ 2006.
[82] T.-C. Hsu, C.-C. Yu, and C.-M. Yeh, "Adsorption of Cu2+ from water using raw and modified coal fly ashes," Fuel, vol. 87, pp. 1355-1359, 6// 2008.
[83] M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim, and A. Idris, "Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review," Desalination, vol. 280, pp. 1-13, 2011.
[84] A. A. Paul Langan(Principal Investigator), G. Bellesia, and A. Bradbury, "Making Fuels from Plants," Los Alamos, USA, Poster2012 2012.
[85] D. Okuno, T. Iwase, K. Shinzawa-Itoh, S. Yoshikawa, and T. Kitagawa, "FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase," J Am Chem Soc, vol. 125, pp. 7209-18, Jun 18 2003.
[86] K. Hadjiivanov, J. Lamotte, and J.-C. Lavalley, "FTIR Study of Low-Temperature CO Adsorption on Pure and Ammonia-Precovered TiO2 (Anatase)," Langmuir, vol. 13, pp. 3374-3381, 1997/06/01 1997.
[87] E. Mendelovici, R. L. Frost, and J. T. Kloprogge, "Modification of Chrysotile Surface by Organosilanes: An IR-Photoacoustic Spectroscopy Study," J Colloid Interface Sci, vol. 238, pp. 273-278, Jun 15 2001.
[88] J. J. van Thor, N. Fisher, and P. R. Rich, "Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore," J Phys Chem B, vol. 109, pp. 20597-604, Nov 3 2005.
[89] J. M. Smith, H. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics: McGraw-Hill Education, 2005.
[90] V. C. Srivastava, M. M. Swamy, I. D. Mall, B. Prasad, and I. M. Mishra, "Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 272, pp. 89-104, 2006.