فهرست:
فصل اول
مقدمه................................................................................................................................................ 3
فصل دوم
2-1- نانوذرات ............................................................................................................................... 9
2-2- خواص نانوذرات .................................................................................................................. 9
2-3- تاریخچهی پیدایش زئولیت................................................................................................... 11
2-4- ساختار زئولیت ..................................................................................................................... 13
2-5- زئولیتهای خانوادهی MFI .................................................................................................. 15
2-6- شرایط عمومی سنتز زئولیتها ............................................................................................. 19
2-7- سنتز زئولیتها ..................................................................................................................... 19
2-8- زئولیتهای کلوئیدی............................................................................................................ 22
2-9- سنتز نانوبلورهای زئولیت .................................................................................................... 23
2-10- ویژگیهای زئولیت ........................................................................................................... 24
2-11- روشهای فیزیکی- شیمیایی شناسایی و تعیین ساختار زئولیتها .................................... 24
2-11-1- پراش اشعهی X(XRD) ................................................................................................. 25
2-11-2- میکروسکوپ الکترونی پویشی (SEM) ......................................................................... 26
2-11-3- طیفسنجی مادون قرمز(IR) .......................................................................................... 28
2-12- تعویض یون ...................................................................................................................... 29
2-12-1- خواص یون سولفات و روشهای اندازهگیری آن ....................................................... 30
2-13- روشهای پتانسیومتری .................................................................................................... 31
2-14- گزینشپذیری ................................................................................................................... 32
فصل سوم
3-1- مواد شیمیایی ...................................................................................................................... 35
3-2-1- وسایل و تجهیزات ........................................................................................................ 36
3-2-2- محاسبات و بررسیهای نرمافزاری ................................................................................ 37
3-3- سنتز نانوزئولیت 5ZSM- ................................................................................................... 37
3-4- مراحل آزمایشگاهی ........................................................................................................... 38
3-4-1- تهیهی الکترود اصلاح شده ........................................................................................... 39
3-4-2- روش انجام کار با الکترود ............................................................................................. 39
فصل چهارم
4-1- بررسی ویژگیهای نانوزئولیت 5ZSM- ............................................................................. 41
4-2- بررسی ویژگی الکترود SMNZ ................................................................................................................. 43
4-3- ملاحظات تئوری SMNZ.................................................................................................... 45
4-4- بهینهسازی مقدار اصلاح کنندهی مورد نیاز در ساخت الکترود ......................................... 47
4-5- بررسی اثر pH بر روی عملکرد الکترود ............................................................................. 50
4-6- بررسی تأثیرقدرت یونی محیط بر روی عملکرد الکترود ................................................... 51
4-7- بررسی تأثیر دما بر روی پاسخ الکترود .............................................................................. 53
4-8- چگونگی تعیین گزینشپذیری ........................................................................................... 54
4-9- ویژگیهای پاسخ الکترود ................................................................................................... 58
4-10- کاربردهای تحلیلی/CPE5ZSM- الکترود .......................................................................... 59
4-11- استفاده از SMNZ/CPE در اندازهگیری سولفات در نمونههای حقیقی ............................. 60
4-12- نتیجهگیری نهایی ............................................................................................................. 62
مقالات ارائه شده در سمینارهای داخلی و بینالمللی و مقالهی فرستاده شده ............................... 63
پیشنهاد برای کارهای آینده ........................................................................................................... 65
منابع .............................................................................................................................................. 66
چکیدهی انگلیسی ........................................................................................................................ 72
منبع:
[5]بیپروای- لنگرودی پوریا " کاربرد نانولولههای کربنی چند دیواره و نانوذرات مایسلی برای استخراج آلایندههای محیطی و اندازهگیری آنها توسط روشهای مختلف تجزیهای " ، پایان نامه دکترا، دانشکده شیمی، دانشگاه مازندران، 1389.
[73] دکتر سید مهدی گلابی" مقدمهای بر الکتروشیمی تجزیهای- اصول و کاربردها"، چاپ دوم، انتشارات ستوده، پاییز 1382، صفحات (155-153 و 181و182)
[1] L. Zhang, C. XU, B. Li, Micro. Chem, J. 95 (2010) 186.
[2] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A. M. Seifalian, Biomaterials. 28 (2007) 4717.
[3] X. Chen, X. Wang, L. Liu, D. Yang, L. Fan, Anal. Chim.Acta.542 (2005) 144.
[4] C. Unni, D. Philip, S. L. Smitha, K.M. Nissamudeen, K.G. Gopchandran, Spectrochim.Part A, 72 (2009) 827.
[6] http://www.nasatech.com/NEWS/Oct02/who-1002.htm.
[7] C. Burda, X.Chen, R. Narayanan, M.A. El-Sayed, Chem.Rev, 105 (2005) 1052.
[8] D. M. Eigler, E. K. Schweizer, Nature, London 344 (1990) 524.
[9] O. Muller, W. J. Parak, M. G.Wiedemanna, F. Martinia, J. of Biomechanics, 37 (2004) 1623.
[10]D. B. Harden, J. M. C. Toinbee, Archaeologia, 97(1959) 179
[11] N. Taniguchi, On the Basic Concept of ‘Nanotechnology. Proc. Intl. Conf. Prod. London, Part ᴨ British Socity of Precision Engineering, 1974.
[12] M. Ratner and D. A. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea” New Jersy: Prentice – Hall, 2002. P 38.
[13] V. E. Borisenko, S. Ossicini, “ What is What in the NanoWord: A handbook on Nanoscience and Nanotechnology” Weinheim: Wiley – VCH, 2005.
[14] E. Drexler, “Nanosystem: Molecular Machinery, Manufacturing, and Computation” MIT phD thesis. New York: Wiley – VCH, 1991.
[15] M. Ratner and D. A. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big Idea” New Jersy: Prentice – Hall, 2002. P 38.
[16] N. Taniguchi, On the Basic Concept of ‘Nanotechnology. Proc. Intl. Conf. Prod. London, Part ᴨ British Socity of Precision Engineering, 1974.
[17] E. Drexler, “Nanosystem: Molecular Machinery, Manufacturing, and Computation” MIT phD thesis. New York: Wiley – VCH, 1991.
[18] A. J. Clarksen, D. A. Buckingham, A. J. Rogers, A. G. Blackman, C. R. Clark, Jomus. 56 (2004)38.
[19] B. C. Regan, S. Aloni, K. Jensen, A. Zettl, Appl. Phys. Lett. 86 (2005) 119-123.
[20] P. Holister, J. W. Weener, C. Roman Vas, T. Harper, “Nanoparticles . Technology White Papers 3”, Published by Cientifica, 2003, P 1-11.
[21] D. Kumar, V. B. Reddy, B. G. Mishra, R. K. Rana, M. N. Nadaguoda and R. S. Varma, Tetrahedron, 63 (2007) 3093.
[22] Y. Cui, Y. Liu, X. Jing, P. Zhang, and X. Chen, Acta Biomaterialia. 5 (2009) 2680.
[23] R. Bratschitsch, A. Leitenstorfer, Nat. Mate. 5 (2006) 855.
[24] M. Ahameda, M. S. AlSalhia, M.K.J. Siddiquib, Clinica Chimica Acta. 411 (2010) 1841.
[25] J. Caro, M. Noak, P. Kolsch, R. Schafer, Micropor. Mesopor. Mat. 38 (2000) 3.
[26] Y. Yan, T. Bein, J. Am. Chem. SOC. 117 (1995) 9990.
[27] Z. B. Wang, H. T. Wang, A. P. Mitra, L. M. Huang, Y. S. Yang, Adv. Mater. 13 (2001) 746.
[28] Z. B. Wang, A. P. Mitra, H. T. Wang, L. M. Huang, H. Yang, Adv. Mat. 13 (2001) 1463.
[29] T. Merkel, B. Freeman, R. Spontak, Z. He, I. Pinnau, A. Hill, Sci. 296 (2002) 519.
[30] W. Koros, R. Mahajan, J. Membrane, Sci. 181 (2001) 141.
[31] M. B. Shiflett, H. C. Foley, Sci. 285 (1999) 1902.
[32] R. de Vos, H. Werweij, Science. 279 (1998) 1710.
[33] Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Nature, 389 (1997) 364.
[34] G. Reding, T. Maurer, B.K. Czarnetzki, Micropor. Mesopor. Mat. 57 (2003) 83-92.
[35] K. Tang, X. Hong, Y. H. Zhao, Y. G. Wang, J. Asian, Earth. Sci. 29 (2011) 779-787.
[36] M. M. Ardakani, Z. Akrami, H. Kazemian, HR. Zare. J. Electroanal. Chem. 586 (2006) 31-38.
[37] M. Tsapatsis, G. Xomeritakis, H. Hillhous, S. Nair, V. Nikolakis, G. Bonilla, Z. Lai, Zeolite Membranes, Cattech. 3 (2000) 148.
[38] T. Bein, Chem. Mater. 8 (1996) 1636.
[39] T. Rohani, MA. Taher, Talanta 78 (2009) 743-747.
[40] M. Rauscher, K. Kesore, R. Monning, W. Schwieger, Appl. Catal. A-Gen. 2 (1999) 249-256.
[41] X. Feng, W. Hall, J. Catal.166 (1997) 386.
[42] B. H. Jeong, Y. Hasegawa, K. Kusakabe, S. Morooka, Sep. Sci. Technol. 37 (6) (2002) 115.
[43] G. W. Meindersma, A. B. de Haan, Desalination, 149 (2002) 29.
[44] A. Corma, M. E. Davis, Chem. Phys. Chem. 5 (2004) 304.
[45] R. M. Milton, US Pattent, 2 882,243(1959).
[46] L. Bonaccorsi, E. Proverbio, J. Crystal. Growth, 247 (2003) 555.
[47] P. Chu, F. G. Dwyer, V. Clark, J. Eur. Pat. 35 (1990) 8827.
[48] M. D. Romero, J. M. Gomez, J. Ovejero, A. Rodriguez, Mater. Res. Bull. 39 (2004) 389.
[49] X. Xu, W. Yang, J. Lin, L. Lin, Sep Purif.Technol. 25 (2001) 241.
[50] D. P. Serrano, M. A. Sanz, E. Castillo, A. Rodriguez, P. Sanches, Micropor. Mesopor. Mat. 62 (2004) 197.
[51] O. G. Somani, A. L. Choudhari, B. S. Rao, S. P. Mirajkar, Mater. Chem. Phys, 82 (2003) 538.
[52] W. Song, R. E. Justice, C. A. Jones, V. H. Grassian, Langmuir, 20 (2004) 4696.
[53] D. W. Breck, Zeolite Molecular Sive, Krieger Publication Company, Florida, 1984.
[54] R. Fricke, H. Kosslick, G. Lischke, M. Richter, Chem. Rev. 100 (2000) 2303.
[55] Q. Li, Colloidal Zeolite nucleation to zoned film by Seeded growth, Doctorial thesis, Department of chemical and metallurgical Engineering, Lulea university of Technology, Sweden, 2002.
[56] J. D. Cook, R. W. Thompson, Zeolites, 8 (1988) 322.
[57] T. E. Gier, G. D. Stuchy, Nature, 349 (1991) 508.
[58] R. Szostak, Molecular sieves, Principles of Synthesis and Idetification, Van Norstrand Reinhold, New York, 1989.
[59] M. J. Annen, M. E. Davise, J. B. Higgins, J. L. Schlenker, J. Chem. Soc. Chem. Commun. 21 (1991) 1175.
[60] X. Bu, T. E. Gier, P. Feng, G. D. Stuchy, Micropor. Mesopor. Mat. 20 (1988) 371.
[61] J. M. Bennett, W. J. Dytrych, J. J. Pluth, J. W. Richardson Smith, J. V. Zeolite, 6 (1986) 349.
[62] C. Baerlocher, L. B. McCusker, D. H. Olson. Elsevier, 27 (2007) 231-237.
[63] N. Guillou, Q. Gao, M. Nogues, R. E. Morris, M. Hervieu, G. A. Ferey, K.C.R. Cheetham, Acad. Sci. Paris. 2 (1999) 387.
[64] E. M. Flanigen, H. Khatami, H. A. Seymenski, L. B. Sand, Am. Chem. Soc. 101 (1971) 201-228.
[65] E. Giedel, Bohlig, H. Peuker, C. Pilz, W. Stud. Surf, Sci. Catal.65 (1991) 511.
[66] E. Bauer, E. Geidel, C. Peuker, W. Pils, Zeolites, 17 (1996) 278.
[67] H. G. Karge, W. Niessen, Catal.Today, 8 (1991) 451.
[68] V. B. Kazansky, V.Y. Borovkov, H. G. Karge, J Chem. Soc. 93 (1997) 1843.
[69] H. Esemann, H. Forster, E. Geidel, K. Krause. Micropor. Mat. 6 (1996) 321.
[70] J. Weitkamp, Solid State Ionics, 131 (2000)175.
[71] S.K. Hassani Nejad-Darzi, A. Samadi-Maybodi, M. Ghobakhluo, Synthesis and characterization of modified ZSM-5 nanozeolite and their applications in adsorption of Acridine Orange dye from aqueous solution, J. Porous Mater. 2013, 20, 909–916.
[72] R. Buck, V. Cosofret, Recommended procedures for calibration of ion-selective electrodes, Pure Appl. Chem. 65 (1993) 1849–1858.
[74] Y. Li, J.N. Armor, Selective catalytic reduction of NOx with methane over metal exchange zeolites, Appl. Catal. A-Gen. 2 (1992) 239–256.
[75] S. Salmanpour, T. Tavana, A. Pahlavan, M.A. Khalilzadeh, A.A. Ensafi, H. Karimi-Maleh, H. Beitollahi, E. Kowsari, D. Zareyee, Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode, Materials Science and Engineering C 32 (2012) 1912–1918.
[76] R.S. Bowman, Applications of surfactant-modified zeolites to environmental remediation, Micropor. Mesopor.Mater. 61 (2003) 43–56.
[77] U. Wingenfelder, G. Furrer, R. Schulin, Sorption of antimonate by HDTMA-modified zeolite, Micropor. Mesopor.Mater.95 (2006) 265–271.
[78] A. Walcarius, Zeolite-modied electrodes in electroanalytical chemistry, Anal. Chem. Acta 384 (1999) 1–16.
[79] R.L. Anderson, Practical Statistics for Analytical Chemists, Van Nostrand Reinhold, New York, 1987. p. 62296.
[80] A. Nezamzadeh-Ejhieh, N. Masoudipour, Application of a new potentiometric method for determination of phosphate based on a surfactant-modified zeolite carbon-paste electrode (SMZ-CPE), Anal. Chim. Acta 658 (2010) 68–74
[81] R.P. Buck, Lindner, Recommendations for nomenclature of ionselective electrodes, Pure Appl. Chem. 66 (1994) 2527–2536.
[82] A. Soleymanpour, E. Hamidi Asl, M.A. Nasseri, Chemically Modified Carbon Paste Electrode for Determination of Sulfate Ion by Potentiometric Method, Electroanalysis 18, 2006, 1598–1604
[83] A. Nezamzadeh-Ejhieh, A. Esmaeilian, Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate,Micropor. Mesopor.Mater.147 (2012) 302–309
[84] A. Soleymanpour, M. Shamsipur, M. Akhond, H. Sharghi, M. A. Naseri, Iodide-selective carbon paste electrodes based on recently synthesized Schiff base complexes of Fe(III), Anal. Chim. Acta 450 (2001) 37–44.
[85] S. Nishizawa, P. Buhlmann, K.P. Xiao, Y. Umezawa, Application of a bis-thiourea ionophore for an anion selective electrode with a remarkable sulfate selectivity, Anal. Chim. Acta 358 (1998) 35–44.
[86] M. Morigi, E. Scavetta, M. Berrettoni, M. Giorgetti, D. Tonelli, Sulfate-selective electrodes based on hydrotalcites, Anal. Chim. Acta 439 (2001) 265–272.
[87] M. Fibbioli, M. Berger, F.P. Schmidtchen, E. Pretsch, Polymeric Membrane Electrodes for Monohydrogen Phosphate and Sulfate, Anal. Chem. 72 (2000) 156–160.
[88] Z.Q. Li, G.D. Liu, L.M. Duan, G.L. Shen, R.Q. Yu, Sulfate-selective PVC membrane electrodes based on a derivative of imidazole as a neutral carrier, Anal. Chim. Acta 382 (1999) 165–170.
[89] M. Shamsipura, M. Yousefi, M.R. Ganjali, T. Poursaberi, M. Faal-Rastgar, Highly selective sulfatePVC-membrane electrode based on 2,5-diphenyl-1,2,4,5-tetraaza-bicyclo[2.2.1]heptane as a neutral carrier, Sens. Actuators, B 82 (2002) 105–110.
[90] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, 5th Edition, pp.14, 1998, Harcourt Brace & Company.
[91] A.I. Vogel, Textbook of Quantitative Inorganic Analysis, Fifth ed., Longman Scientific Thechnical, New York, 1989.
[92]Christian Baerlocher, Lynne B. McCusker, David H. Olson, Atlas of Zeolite Framework Type,6th Edition,February (2007).
[93]Hassan Karimi-Maleh & Ali A. Ensafi & Hadi Beitollahi &Vahid Nasiri & Mohammad A. Khalilzadeh &Khalilzadeh &Pourya Biparva. Ionics (2012) 18:687–694.
[94]H. Freiser, Coated wire ion-selective electrodes. Principles and practice, J. Chem. Soc., Faraday Trans. 82 (1986) 1217–1221.
[95]A. Nezamzadeh-Ejhieh, A. Esmaeilian, Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate,Micropor. Mesopor.Mater.147 (2012) 302–309