فهرست:
فهرست مطالب.....................................................................................................................................................................و
فهرست شکلها...................................................................................................................................................................ح
فهرست جداول ..................................................................................................................................................................ط
فصل اول: بررسی اهمیت موضوع و مفاهیم مرتبط با آن
1-1 مقدمه...................................................................................................................................................... 1
1-2 چرخه انرژی تجدیدپذیر بر پایه زیست توده 3
1-3 تولید زیست توده توسط فرآیند فتوسنتز. 4
1-4 هیدرولیز و تخمیر. 4
1-5 نیاز به منابع آب و تصفیه پسابها 6
1-6 پیل سوختی.. 7
1-7 تعریف پیلسوختی.. 8
1-8 انواع پیل سوختی.. 8
1-9پیلهای سوختی میکروبی.. 9
1-9-1 کاربرد پیل سوختی میکروبی................................................................................................... 11
1-9-1-1 تولید برق..................................................................................................................... 12
1-9-1-2 تصفیه پسابها.............................................................................................................. 12
1-9-1-3 تولید هیدروژن.............................................................................................................. 13
1-9-1-4 حذف مواد شیمیایی....................................................................................................... 13
1-9-1-5 حسگرهای زیستی........................................................................................................... 13
1-9-2 مقایسه پیلهای سوختی میکروبی با فرآیندهای بیواتانولی و متان زدایی............................ 14
1-9-2-1 فناوریهای متانزدایی و پیل سوختی میکروبی.............................................................. 14
1-9-2-2 فناوریهای بیواتانول و پیل سوختی میکروبی................................................................. 14
1-9-3 بررسی جامعه میکروبی و زنجیره تنفسی در آنها................................................................... 15
1-9-3-1 چگونگی انتقال الکترونها از سطح میکروب به سطح آند پیل سوختی............................... 17
1-10پیلهای سوختی میکروبی معکوس...... 21
1-10-1 مکانیسمهای انتقال الکترون..................................................................................................... 22
1-10-2 بیوفیلمهای کاتد....................................................................................................................... 24
1-10-3 الکترود کاتد............................................................................................................................... 24
1-10-4 شیمی محلول.............................................................................................................................. 25
1-11هدف از پژوهش پیش رو......................................................................................................................... 27
فصل دوم: بررسی پژوهشهای پیشین
2-1 مروری بر پیلهای سوختی از گذشته تا حال......................................................................................... 28
2-2تاریخچه پیل سوختی میکروبی.. 29
2-3 تاریخچه مدلسازی پیل سوختی میکروبی.. 29
2-4 تاریخچه الکتروسنتز میکروبی.. 33
فصل سوم: بررسی معادلات و ساختار مدل
3-1 فرضیات انجام گرفته .............................................................................................................................................36
3-2 معادلات سرعت....................................................................................................................................... 37
3-2-1 معادلات مصرف سوبسترا................................................................................................................ 37
3-2-2 معادله سرعت پدیده خود-اکسایی میکروبهای فعال...................................................................... 40
3-2-3 معادله سرعت غیر فعال شدن میکروبهای فعال. 41
3-3 معادله بقای جرم سوبسترا در بیوفیلم. 41
3-4 بررسی ضریب انتقال جرم خارجی.. 43
3-5 معادله بقای جرم سوبسترا در حجم مایع کاتولیت... 44
3-6 معادله پتانسیل الکتریکی و قانون اهم. 45
3-7 بررسی مقاومتهای اهمی.. 47
3-8 معادله بقای جرم زیست توده 48
3-9 نیم واکنشهای انجام گرفته در بخش آند و کاتد پیل سوختی میکروبی معکوس... 51
3-10 بررسی مدل مورد استفاده جهت تخمین پارامترهای طراحی ..................................................................51
3-11 روش حل عددی.. 52
3-11-1 روش تفاضلات محدود. 53
3-11-1-1 تفاضلات پیشرو.................................................................................................................. 53
3-11-1-2 تفاضلات پسرو................................................................................................................... 53
3-11-1-3 تفاضلات مرکزی................................................................................................................ 53
فصل چهارم: نتایج به دست آمده و تجزیه و تحلیل آنها
4-1 بررسی شرایط مرجع.............................................................................................................................. 57
4-2 اثر تغییر پتانسیل کاتد و غلظت سوبسترا در حجم مایع....................................................................... 61
4-3 مقایسه مقادیر واقعی با مقادیر حاصل از مدلسازی........................................................................................68
4-4 جمع بندی و نتیجه گیری..................................................................................................................... 69
4-4 پیشنهادات.............................................................................................................................................. 71
منابع و مراجع.............................................................................................................................................. 72
منبع:
Hwanga, I.U., Yua H.N., Kima, S.S., Gil Lee, D., (2008) "Bipolar plate made of carbon fiber epoxy composite for polymer electrolyte membrane fuel cells", J.Power Sources., Vol.184, p.90-94.
Logan, B.E., (2007) "Microbial fuel cells", Wiley, Newyork.
Lovely R.Derek (2006)."Microbial fuel cell: novel microbial physiologies and engineering approaches".Current opinion in Biotechnology 17:327-332
Virdis, B., Freguia, S., Rozendal, R.A., Rabaey, K., Yuan, Z., Keller, J., (2011) "Microbial fuel cells", s.l., Elsevier B.V., 2011.
Rittmann, B.E., Torres, C. I., Marcus, A.K., (2008) "Understanding the distinguishing features of a microbial fuel cell as a biomass-based renewable energy technology", Emerging Environmental Technologies, Springer Science.
Pozio, A., Zaza, F., Masci, A., Silva, R.F., (2008) "Bipolar plate materials for PEMFCs a conductivity and stability study", J.Power Sources., Vol.179, p.631-639.
فناوری پیل سوختی و هیدروژن، مبانی نظری و کاربردها: جلال الدین هاشمی
Lee, H.S., Kim, H.J., Kim, S.G., Ahn, S.H., (2007) "Evaluation of graphite composite bipolar plate for PEM (proton exchange membrane) fuel cell: Electrical, mechanical, and molding properties", J.Materials Processing Technology., Vol.41, p.425-428.
Du, L., Sadhan, M., Jana, C., (2007) "Highly conductive epoxy/Graphite composites for bipolar plates in proton exchange membrane fuel cells", J.Power Sources., Vol.172, p.734-741.
Minh N.Q.and Takahashi.T. (1997) "Science and technology of ceramic fuel cells".Amsterdam: Elsevier.
Singhal S.C., and Kendall K., editors. (2003) "High temperature solid oxide fuel cells: fundamentals, design and applications'', Elsevier.
Jeon H., et al. (2006) "Microstructural Optimization of anode-Supported Solide Oxide Fuel Cells by a Comprehensive Microscale Model", J. Electrochem.Soc., Vol.153, PP.A406-A417.
Logan, B.E., Regan J.M., (2006) "Microbial fuel cells: challenges and applications." Environmental Science & Technology, pp.5172-5180.
Bond, D.R., Lovley, D.R., (2003) "Electricity production by geobacter sulfurreducens attached to electrodes", Applied and Environmental Microbiology, Vol.69, No.3, pp.1548–1555.
Chaudhuri, S.K., Lovley, D. R., (2003) "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells", Nature Biotechnology, pp.1-4.
Du, Z., Li, H., Gu, T., (2007) "A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy", Biotechnology Advances, Vol.25, pp.464–482.
Rabaey K., Lissens G., Siciliano S.D., Verstraete W., (2003) "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency", Biotechnology Letters, pp.1531-1535.
Liu, H., Logan, B. E, (2004) "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane", Environmental Science and Technologyi, Vol.38, No.14, pp.4040-4046.
Oh, S.E., Logan, B.E., (2005) "Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies", Water Resources, Vol.39, No.19, pp.4673-4682.
Min, B., Kim, J.R., Oh, S., Regan,J.M., Logan,B.E., (2005) "Electricity generation from swine wastewater using microbial fuel cells", Water Resources, Vol.39, No.20, pp.4961 -4968.
Zuo, Y., Maness, P.C., Logan, B.E., (2006) "Electricity production from steam-exploded corn stover biomass", Energy and Fuels, Vol.20, No.4, pp.1716–1721.
Liu, H., Ramnarayanan, R., Logan, B.E., (2004) "Production of electricity during wastewater treatment using a single chamber microbial fuel cell", Environmental Science and Technology, Vol.38, pp.2281-2285.
Lee, J.Y., Phung, N.T., Chang, I.S., Kim, B.H., Sung, H.C., (2003) "Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses", FEMS Microbiology Letters, Vol.223, pp.185-191.
Gregory, K.B., Bond, D.R., Lovley, D.R., (2004) "Graphite electrodes as electron donors for anaerobic respiration", Environmental Microbiology, Vol.6, pp.596-604.
Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., (2002) "Electrode-reducing microorganisms that harvest energy from marine sediments", Science, Vol.295, pp.483-485.
Schroder, U., (2009) “Microbial fuel cells, Elsevier” B.V..
Kim, B.H., Park, H.S., Kim, H.J., Kim, G.T., Chang, I.S., Lee, J., Phung, N.T., (2004) "Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell", Applied Microbiological Biotechnology, Vol.63, pp.672–681.
Reguera, G., (2005) "Extracellular electron transfer via microbial nanowires", Nature, Vol.435, pp.1098–1101.
Bernardi, D.M., Verbrugge, M.W., (1991) "Mathematical-model of a gas-diffusion electrode bonded to a polymer electrolyte", AIChE Journal, Vol.37, pp.1151-1163, 1991.
Marcus, K.A., Torres, C.I., Rittmann, B.E., (2007) "Conduction based modeling of the biofilm anode of a microbial fuel cell", Biotechnology and Bioengineering, Vol.98, pp.1171–1182.
Nevin Kelly.P, Woodard L.Trevor, Franks E.Ashley, Summers M.Zarath, and Lovley R.Derek, (2010) "Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds".mBio 1(2):e00103-10
Nevin Kelly P., Hensley A.Sarah, Franks E.Ashley, Summers M.Zarath, Ou Jianhong, Woodard L.Trevor, Snoeyenbos-West L.Oona, and Lovley Derek R. (2011) "Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms". Applied and Environmental Microbiology.77: 2882–2886.
Huang Liping, Regan John M., Quan Xie. (2011) "Electron transfer mechanisms, new applications and performance of biocathode microbial fuel cells". Bioresource Technology 102: 316–323.
Behera, M., Jana, P.S., Ghangrekar, J.M.M., (2010) "Performance evaluation of low cost."Microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode". Bioresource Technol.101, 1183–1189.
Du Zhuwei, Li Haoran, Gu Tingyue, (2007) "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy", Biotechnology Advances, 25: 464-482.
Lovley Derek.R., (1993) "Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environment", Trends Ecology and Evolution, 8: 213.
Kim BH, Kim HJ, Hyun MS, Park DH, (1999) "Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrifaciens", Microbiol Biotechnology, 9: 127-131.
Scholz F, Schroder U., (2003) "Bacterial batteries", Natural Biotechnology, 21: 1151-1252.
Zhang, X.C., Halme, A., (1995) "Modelling of a microbial fuel cell process", Biotechnology Letters, 17: 809-814.
Picioreanu, C., Headc, I.M., Katuri, K.P., van Loosdrecht, M.C.M., (2007) "A computational model for biofilm-based microbial fuel cells", Water Research, 41: 2921–2940.
Torres, C.I., Marcus, K.A., Parameswaran, P., Rittmann, B.E., (2008) "Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode", Environmental Science and Technology, 42: 6593–6597.
Picioreanu, C., Katuri, K.P., van Loosdrecht, M.C.M., Head, I.M., Scott, K., (2010) "Modelling microbial fuel cells with suspended cells and added electron transfer mediator", Journal of Applied Electrochemistry, 40: 151–162.
Picioreanu, C., van Loosdrecht, M.C.M., Curtis, T.P., Scott, K., (2010) "Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance", Bioelectrochemistry, 78: 8–24.
Torres, C.I., Marcus, K.A., Rittmann, B.E., (2008) "Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria", Biotechnology and Bioengineering, 100: 872-881.
Zeng, Y., Choo, Y.F., Kim, B.H., Wua, P., (2010) "Modelling and simulation of two-chamber microbial fuel cell", Journal of Power Sources, 195: 79–89.
Pinto, R.P., Srinivasan, B., Manuel, M.F., Tartakovsky, B., (2010) "A two-population bio-electrochemical model of a microbial fuel cell", Bioresource Technology, 101: 5256–5265.
Emde Rainer and Schink Bernhard, (1990) "Enhanced Propionate Formation by Propionibacterium freudenreichii subsp.freudenreichii in a Three-Electrode Amperometric Culture System", Applied and Environmental Microbiology, 56: 2771-2776.
Park D.H., Laivenieks M., Guettler M.V., Jain M.K.And Zeikus J.G., (1999) "Microbial Utilization of Electrically Reduced Neutral Red as the Sole Electron Donor for Growth and Metabolite Production", Applied and Environmental Microbiology, 65:2912-2917.
Rabaey Korneel and Rozendal René A., (2010) "Microbial electrosynthesis revisiting the electrical route for microbial production", Applied and Industrial Microbiology, 8: 706-716.
Cheng Shaoan, Xing Defeng, Call Douglase F.and Logan Bruce E., (2009) "Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis", Environmental Science Technology, 43: 3953–3958.
Rozendal Rene' A., Jeremiasse Adriaan W., Hamelsers Hubertus V.M.and Buisman Cees J.N., (2008) "Hydrogen Production with a Microbial Biocathode", Environmental Science Technology, 42: 629-634.
Rittmann, B.E., McCarty, P.L., (2001) "Environmental biotechnology: principles and applications", McGraw-Hill, Newyork.
Bae, W., Rittmann, B.E., (1996) "Responses of intracellular cofactors to single and dual substrate limitations", Biotechnology and Bioengineering, Vol.49, pp.690–699.
Bae, W., Rittmann, B.E., (1996) "A structured model of dual-limitation kinetics", Biotechnology and Bioengineering, Vol.49, pp.683–689.
Beyenal, H., Lewandowski, Z., (2002) "Internal and external mass transfer in biofilms grown at various flow velocities", Biotechnology Progress, Vol.66, pp.55-61.
Horn, H., Hempel, D.C., (1998) "Modeling mass transfer and substrate utilization in the boundary layer of biofilm system", Water Science and Technology, Vol.37, No.4-5, pp.139-147.
Rasmussen, K., Lewandowski, Z., (1998) "Microelectrode measurements of local mass transport rates in heterogeneous biofilms", Biotechnology and Bioengineering, Vol.59, No.3, pp.302-309.
Horn, H., Hempel, D.C., (1995) "Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system", Water Science and Technology, Vol.32, No.6, pp.199-204.
Bird, R.B., Stewart, W.E., Lightfoot, E.N., (2003) "Transport phenomena.2", John Wiley & Sons Inc, New York.
Horn, H., Hempel. D.C., (1997) "Substrate utilization and mass transfer in an autotrophic biofilm system: experimental results and numerical simulation", Biotechnology and Bioengineering, Vol.53, No.4, pp.363-371.
Kim, J.R., Cheng, S., Oh, S.E., Logan, B.E., (2007) "Power generation using different cation, anion and ultrafiltration membranes in microbial fuel cells", Environmental Science and Technology, Vol.41, No.3, pp.1004-1009.
Ter Heijne, A., Hamelers, H.V.M., de Wilde, V., Rozendal, R.R., Buisman, C.J.N., (2006) "Ferric iron reduction as an alternative for platinum-based cathodes in microbial fuel cell", Environmental Science and Technology, Vol.40, pp.5200-5205.
Wanner, O., Gujer, W., (1986) "A multispecies biofilm model", Biotechnology and Bioengineering, Vol.28, pp.314–328.
Wanner, O., Eberl, H.J., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B.E., van Loosdrecht, M.C.M., (2006) "Mathematical modeling of biofilms", IWA Task Group on Biofilm Modeling.
Perry, (2007) "Chemical engineering's handbook.8", McGraw-Hill Professional, NewYork.