فهرست:
فهرست شکل ها ........................................................................................................................................................................ 7
فهرست جداول ........................................................................................................................................................................ 11
چکیده...................................................................................................................................................................................... 12
پیش گفتار ............................................................................................................................................................................... 13
1. فصل اول 13
1-1 مقدمه. 14
1-2 شناسایی آلاینده فنلی.. 14
1-3 روش های حذف فنل.. 16
1-3-1 جذب سطحی.. 17
1-3-2 رزینهای تبادل یونی.. 18
1-3-3 انعقاد الکتریکی.. 19
1-3-4 فرآیندهای اکسیداسیون پیشرفته. 19
1-3-5 استفاده از سیال فوق بحرانی CO2. 20
1-3-6 استفاده از اشعه UV.. 21
1-3-7 روشهای بیولوژیکی.. 22
1-3-8 فرآیندهای غشایی.. 24
2. فصل دوم 31
2-1مقدمه 32
2-1-1 بیوراکتور غشایی.. 32
2-2 بررسی پژوهشهای صورت پذیرفته در زمینه حذف فنل توسط بیوراکتور 33
3. فصل سوم 41
3-1 دینامیک سیالات محاسباتی.. 42
3-2 تشریح فرآیند 42
3-3 فرضیات 43
3-4 معادلات برای درون الیاف 45
3-5 معادلات برای غشاء 46
3-6 معادلات برای پوسته. 47
3-7 مکانیزم واکنش 48
3-8 معادله حاکم بر تانک خوراک 49
3-9 معادله حاکم بر تانک سلولی 49
4. فصل چهارم 50
4-1 مقدمه. 51
4-2 نحوه انجام شبیه سازی به کمک نرم افزار . 51
5. فصل پنجم 59
5- 1 مقدمه 60
5-2 توزیع غلظت 60
5-2-1 توزیع غلظت درون الیاف.. 60
5-2-2 توزیع غلظت در پوسته. 61
5-3 توزیع سرعت 62
5-3-1 توزیع سرعت درون الیاف.. 62
5-3-2 توزیع سرعت درون پوسته. 63
5-4 تأثیر شرایط عملیاتی بر بازدهی حذف فنل.. 64
5-4-1 تأثیر غلظت اولیه. 65
5-4-2 تأثیر دبی جریان فاز سلولی.. 65
5-4-3 تأثیر شعاع خارجی غشاء. 66
5-4-4 تأثیر شعاع داخلی غشاء. 67
6. فصل ششم 68
6-1 نتیجه گیری 69
6-2 پیشنهادات 69
7. مراجع 70
منبع:
1
[1] M. Ghaneian and G. Ghanizadeh, "Application of enzymatic polymerization process for the removal of phenol from synthetic wastewater," Iranian Journal of Health and Environment, vol. 2, pp. 46-55, 2009.
[2] G. Busca, S. Berardinelli, C. Resini, and L. Arrighi, "Technologies for the removal of phenol from fluid streams: A short review of recent developments," Journal of Hazardous Materials, vol. 160, pp. 265-288, 2008.
[3] G. Moussavi, M. Mahmoudi, and B. Barikbin, "Biological removal of phenol from strong wastewaters using a novel MSBR," Water Research, vol. 43, pp. 1295-1302, 2009.
[4] I. Metcalf and H. Eddy, "Wastewater Engineering; Treatment and Reuse," 2003.
[5] J. Yan, W. Jianping, L. Hongmei, Y. Suliang, and H. Zongding, "The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis," Biochemical Engineering Journal, vol. 24, pp. 243-247, 2005.
[6] K. Sunil, "K., Jayant,“Adsorption for Phenol Removal-A Review”," International Journal of Scientific Engineering and Research, vol. 1, pp. 85-96, 2013.
[7] P. Kumaran and Y. Paruchuri, "Kinetics of phenol biotransformation," Water Research, vol. 31, pp. 11-22, 1997.
[8] H. Cherifi, S. Hanini, and F. Bentahar, "Adsorption of phenol from wastewater using vegetal cords as a new adsorbent," Desalination, vol. 244, pp. 177-187, 2009.
[9] M. C.-a. M. http://www.merckmillipore.com/DE/en/product/Phenol.
[10] O. J. Hao, H. Kim, and P.-C. Chiang, "Decolorization of wastewater," Critical Reviews in Environmental Science and Technology, vol. 30, pp. 449-505, 2000.
[11] L. J. Kennedy, J. J. Vijaya, K. Kayalvizhi, and G. Sekaran, "Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process," Chemical Engineering Journal, vol. 132, pp. 279-287, 2007.
[12] C. Moreno-Castilla, "Adsorption of organic molecules from aqueous solutions on carbon materials," Carbon, vol. 42, pp. 83-94, 2004.
[13] N. Tancredi, N. Medero, F. Möller, J. Píriz, C. Plada, and T. Cordero, "Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood," Journal of Colloid and Interface Science, vol. 279, pp. 357-363, 2004.
[14] Y. Ma, N. Gao, W. Chu, and C. Li, "Removal of phenol by powdered activated carbon adsorption," Frontiers of Environmental Science & Engineering, vol. 7, pp. 158-165, 2013.
[15] N. Roostaei and F. H. Tezel, "Removal of phenol from aqueous solutions by adsorption," Journal of Environmental Management, vol. 70, pp. 157-164, 2004.
[16] F. Banat, B. Al-Bashir, S. Al-Asheh, and O. Hayajneh, "Adsorption of phenol by bentonite," Environmental Pollution, vol. 107, pp. 391-398, 2000.
[17] R. Aravindhan, J. R. Rao, and B. U. Nair, "Application of a chemically modified green macro alga as a biosorbent for phenol removal," Journal of Environmental Management, vol. 90, pp. 1877-1883, 2009.
[18] N. Siva Kumar, M. Venkata Subbaiah, A. Subba Reddy, and A. Krishnaiah, "Biosorption of phenolic compounds from aqueous solutions onto chitosan–abrus precatorius blended beads," Journal of Chemical Technology and Biotechnology, vol. 84, pp. 972-981, 2009.
[19] S. D. Alexandratos, "Ion-exchange resins: a retrospective from industrial and engineering chemistry research," Industrial & Engineering Chemistry Research, vol. 48, pp. 388-398, 2008.
[20] K.-C. Lee and Y. Ku, "Removal of chlorophenols from aqueous solution by anion-exchange resins," Separation Science and Technology, vol. 31, pp. 2557-2577, 1996.
[21] M. Chasanov, R. Kunin, and F. McGarvey, "Sorption of phenols by anion exchange resins," Industrial & Engineering Chemistry, vol. 48, pp. 305-309, 1956.
[22] Z. Ahmed, S. Lyne, and R. Shahrabani, "Removal and recovery of phenol from phenolic wastewater via ion exchange and polymeric resins," Environmental Engineering Science, vol. 17, pp. 245-255, 2000.
[23] R. J. Myers, J. W. Eastes, and F. J. Myers, "Synthetic resins as exchange adsorbents," Industrial & Engineering Chemistry, vol. 33, pp. 697-706, 1941.
[24] C. Feng, N. Sugiura, S. Shimada, and T. Maekawa, "Development of a high performance electrochemical wastewater treatment system," Journal of Hazardous Materials, vol. 103, pp. 65-78, 2003.
[25] Ş. İrdemez, N. Demircioğlu, Y. Ş. Yıldız, and Z. Bingül, "The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes," Separation and Purification Technology, vol. 52, pp. 218-223, 2006.
[26] M. Saleem, A. A. Bukhari, and M. N. Akram, "Electrocoagulation for the Treatment of Wastewater for Reuse in Irrigation and Plantation," Journal of Basic and Applied Sciences, vol. 7, pp. 11-20, 2011.
[27] D. O. Siringi, P. Home, J. S. Chacha, and E. Koehn, "Is electrocoagulation (EC) a solution to the treatment of wastewater and providing clean water for daily use," Journal of Engineering and Applied Sciences, vol. 7, pp. 197-204, 2006.
[28] J. Kochany and J. R. Bolton, "Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide," Environmental Science & Technology, vol. 26, pp. 262-265, 1992.
[29] S. Sharma, J. Ruparelia, and M. L. Patel, "A general review on advanced oxidation processes for waste water treatment," in International Conference on Current Trends in Technology,NIRMA university, 2011.
[30] http://www.novasep.com/technologies/chromatography-SFC.asp.
[31] T. Vatai, M. Škerget, and Ž. Knez, "Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide," Journal of Food Engineering, vol. 90, pp. 246-254, 2009.
[32] M. Bleve, L. Ciurlia, E. Erroi, G. Lionetto, L. Longo, L. Rescio, T. Schettino, and G. Vasapollo, "An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide," Separation and Purification Technology, vol. 64, pp. 192-197, 2008.
[33] J. Sunarso and S. Ismadji, "Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review," Journal of Hazardous Materials, vol. 161, pp. 1-20, 2009.
[34] R. K. Roop and A. Akgerman, "Entrainer effect for supercritical extraction of phenol from water," Industrial & Engineering Chemistry Research, vol. 28, pp. 1542-1546, 1989.
[35] R. K. Roop, R. K. Hess, and A. Akgerman, "Supercritical extraction of pollutants from water and soil," ed, 1989.
[36] C. Boukouvalas, K. Magoulas, and D. Tassios, "Application of supercritical fluid extraction in industrial waste treatment: Thermodynamic modeling and design," Separation Science and Technology, vol. 33, pp. 387-410, 1998.
[37] http://www.bluewaterbio.com/technology-bwb-neotech.asp.
[38] R. W. Legan, "Ultraviolet light takes on CPI role," Chemical Engineer, vol. 89, pp. 95-100, 1982.
[39] A. Mokrini, D. Ousse, and S. Esplugas, "Oxidation of aromatic compounds with UV radiation/ozoneihydrogen peroxide," Water Science and Technology, vol. 35, pp. 95-102, 1997.
[40] S. Esplugas, E. Chamarro, and A. Mokrini, "Degradation of phenol in aqueous solutions using Fe and UV radiation."
[41] B. Czech, "Effect of H2O2 Addition on Phenol Removal from Wastewater Using TiO2/Al2O3 as Photocatalyst," Polish Journal of Environmental Studies, vol. 18, pp. 989-993, 2009.
[42] J. C. Chang, S. F. Ossoff, D. C. Lobe, M. H. Dorfman, C. M. Dumais, R. G. Qualls, and J. D. Johnson, "UV inactivation of pathogenic and indicator microorganisms," Applied and Environmental Microbiology, vol. 49, pp. 1361-1365, 1985.
[43] http://www.sintef.no/Projectweb/NOMRemove/Water-treatment-processes/Biological-treatment/.
[44] J. A. Nicell, J. Bewtra, K. Taylor, N. Biswas, and C. StPierre, "Enzyme catalyzed polymerization and precipitation of aromatic compounds from wastewater," Water Science & Technology, vol. 25, pp. 157-164, 1992.
[45] M. L. Shuler and F. Kargi, Bioprocess Engineering: Prentice Halle Upper Saddle River., 2002.
[46] http://www.petrosep.com/pervaporation_batch.php.
[47] K. W. Böddeker, G. Bengtson, and E. Bode, "Pervaporation of low volatility aromatics from water," Journal of Membrane Science, vol. 53, pp. 143-158, 1990.
[48] P. Wu, R. Field, R. England, and B. Brisdon, "A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams," Journal of Membrane Science, vol. 190, pp. 147-157, 2001.
[49] M. Hoshi, M. Kogure, T. Saitoh, and T. Nakagawa, "Separation of aqueous phenol through polyurethane membranes by pervaporation," Journal of Applied Polymer Science, vol. 65, pp. 469-479, 1997.
[50] T. Gupta, N. C. Pradhan, and B. Adhikari, "Synthesis and performance of a novel polyurethaneurea as pervaporation membrane for the selective removal of phenol from industrial waste water," Bulletin of Materials Science, vol. 25, pp. 533-536, 2002.
[51] N. N. Li, "Separating hydrocarbons with liquid membranes," ed: Google Patents:US3410794 A, 1968.
[52] F. Jiao, X. Chen, W. Hu, L. Yang, and K. Huang, "Enantioselective transport of R-clenbuterol through a bulk liquid membrane containing O, O'-dibenzoyl-(2S, 3S)-tartaric," Journal of the Brazilian Chemical Society, vol. 18, pp. 804-809, 2007.
[53] A. Bódalo, E. Gómez, A. Hidalgo, M. Gómez, M. Murcia, and I. López, "Nanofiltration membranes to reduce phenol concentration in wastewater," Desalination, vol. 245, pp. 680-686, 2009.
[54] H. Mallia and S. Till, "Membrane Bioreactors: Wastewater treatment applications to achieve high quality effluent," Australia: WIOA, Retrieved September, vol. 20, p. 2008, 2001.
[55] J. Radjenović, M. Matošić, I. Mijatović, M. Petrović, and D. Barceló, "Membrane bioreactor (MBR) as an advanced wastewater treatment technology," in Emerging Contaminants from Industrial and Municipal Waste, ed: Springer, 2008, pp. 37-101.
[56] E. Casey, B. Glennon, and G. Hamer, "Review of membrane aerated biofilm reactors," Resources, Conservation and Recycling, vol. 27, pp. 203-215, 1999.
[57] W. E. Barton and A. J. Daugulis, "Evaluation of solvents for extractive butanol fermentation with Clostridium acetobutylicum and the use of poly (propylene glycol) 1200," Applied Microbiology and Biotechnology, vol. 36, pp. 632-639, 1992.
[58] L. D. Collins and A. J. Daugulis, "Use of a two phase partitioning bioreactor for the biodegradation of phenol," Biotechnology Techniques, vol. 10, pp. 643-648, 1996.
[59] W. Edwards, R. Bownes, W. Leukes, E. Jacobs, R. Sanderson, P. Rose, and S. Burton, "A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents," Enzyme and Microbial Technology, vol. 24, pp. 209-217, 1999.
[60] P. Praveen, D. T. T. Nguyen, and K.-C. Loh, "Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat," Biochemical Engineering Journal, pp. 125-133, 2014.
[61] M. H. El-Naas, S. Al-Zuhair, and S. Makhlouf, "Continuous biodegradation of phenol in a spouted bed bioreactor (SBBR)," Chemical Engineering Journal, vol. 160, pp. 565-570, 2010.
[62] P. Praveen and K.-C. Loh, "Simultaneous extraction and biodegradation of phenol in a hollow fiber supported liquid membrane bioreactor," Journal of Membrane Science, vol. 430, pp. 242-251, 2013.
[63] K. Trivunac, S. Stevanovic, and M. Mitrovic, "Pertraction of phenol in hollow-fiber membrane contactors," Desalination, vol. 162, pp. 93-101, 2004.
[64] R.-S. Juang and C.-Y. Wu, "Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors," Chemosphere, vol. 66, pp. 191-198, 2007.
[65] S. Shen, K. Smith, S. Cook, S. Kentish, J. Perera, T. Bowser, and G. Stevens, "Phenol recovery with tributyl phosphate in a hollow fiber membrane contactor: Experimental and model analysis," Separation and Purification Technology, vol. 69, pp. 48-56, 2009.
[66] A. Stella, K. H. Mensforth, T. Bowser, G. W. Stevens, and H. C. Pratt, "Mass transfer performance in Karr reciprocating plate extraction columns," Industrial & Engineering Chemistry Research, vol. 47, pp. 3996-4007, 2008.
[67] K. Igarashi, Y. Yamada, and K.-i. Kurumada, "Removal of phenol from an aqueous solution using hydrogel incorporated with extractant tributyl phosphate," Journal of Chemical Engineering of Japan, vol. 37, pp. 1279-1283, 2004.
[68] R.-S. Juang and W.-C. Huang, "Use of membrane contactors as two-phase bioreactors for the removal of phenol in saline and acidic solutions," Journal of Membrane Science, vol. 313, pp. 207-216, 2008.
[69] F. Fadaei, S. Shirazian, and S. N. Ashrafizadeh, "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors," Desalination, vol. 275, pp. 126-132, 2011.
[70] E. B. Wylie and V. L. Streeter, "Fluid transients," McGraw-Hill New York, vol. 1, 1978.
[71] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport phenomena: John Wiley & Sons, 2007.
[72] A. Gabelman and S.-T. Hwang, "Hollow fiber membrane contactors," Journal of Membrane Science, vol. 159, pp. 61-106, 1999.
[73] J. Happel, "Viscous flow relative to arrays of cylinders," AIChE Journal, vol. 5, pp. 174-177, 1959.
[74] R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach: Jones & Bartlett Learning, 2011.
[75] M. H. El-Naas, S. A. Al-Muhtaseb, and S. Makhlouf, "Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel," Journal of Hazardous Materials, vol. 164, pp. 720-725, 2009.
[76] R.-S. Juang and S.-Y. Tsai, "Role of membrane-attached biofilm in the biodegradation of phenol and sodium salicylate in microporous membrane bioreactors," Journal of Membrane Science, vol. 282, pp. 484-492, 2006.
[77] R.-S. Juang, W.-C. Huang, and Y.-H. Hsu, "Treatment of phenol in synthetic saline wastewater by solvent extraction and two-phase membrane biodegradation," Journal of Hazardous Materials, vol. 164, pp. 46-52, 2009.
[78] P. Praveen and K.-C. Loh, "Kinetics modeling of two phase biodegradation in a hollow fiber membrane bioreactor," Separation and Purification Technology, vol. 122, pp. 350-358, 2014.