فهرست:
عنوان
صفحه
فصل اول- مقدمه و مفاهیم اولیه
1
1-1- مقدمه
2
1-1-1- مزایای جداسازی غشایی
2
1-1-2- طبقه بندی غشاها
3
1-2- نانوفیلتراسیون
5
1-2-1-ویژگی ها و مشخصات اصلی نانوفیلتراسیون
6
1-2-2- ساختار نانوفیلتراسیون
7
1-2-3- کاربرد نانوفیلتراسیون
8
1-3- میعانات گازی
11
1-4- تعریف مساله و بیان سوال های اصلی تحقیق
12
فصل دوم- مروری بر تحقیقات گذشته
15
2-1- مدل های آزمایشگاهی
16
2-1-1- مدل DSPM
16
2-1-2- مدل DSPM-DE
17
2-2- مدل های تئوری
19
2-2-1- مدل بار ثابت
19
2-2-2- مدل بار فضایی
19
2-3- مدلسازی الیاف توخالی
20
2-4- مدلسازی بر مبنای دینامیک سیالات محاسباتی
24
2-5- مدلسازی بر مبنای هوش مصنوعی
25
فصل سوم- مدل سازی
26
3-1- مدل DSPM-DE
27
3-2- مدل بار فضایی
30
3-3- مدلسازی الیاف توخالی
33
3-3-1- قسمت پوسته
34
3-3-2- قسمت غشا
35
3-3-3- قسمت لوله
36
3-4- مدلسازی با استفاده از هوش مصنوعی
37
3-4-1- شبکه های عصبی مصنوعی
38
3-4-2- مدلهای شبکه های عصبی مصنوعی
41
3-4-2-1- مدل نرون تک ورودی
42
3-4-2-2- مدل نرون چند قطبی
46
3-4-3- ساختار شبکه عصبی
48
3-4-3-1- شبکه تک لایه
49
3-4-3-2- شبکه چند لایه
49
3-4-3-3- شبکه های پس خور یا برگشتی
51
3-4-4- یادگیری شبکه های عصبی مصنوعی
52
3-4-4-1- الگوریتم یادگیری پس از انتشار خطا
54
3-4-5- مدل نزدیک ترین همسایه ها
58
فصل چهارم-روش المان محدود
60
4-1- مقدمه
61
4-2- تاریخچه روش عناصر محدود
62
4-3- مراحل اصلی تحلیل عناصر محدود
63
4-4- مدل های ریاضی
64
4-5- روش های مهم کلاسیک عددی
64
4-5-1-روش ریتز
64
4-5-1-1- معایب استفاده از روش تحلیل ریتز
65
4-5-2- روش گالرکین به عنوان یک روش باقیمانده وزن دار
66
4-5-3- مقایسه روش ریتز و روش گالرکین
67
4-6- حوزه کاربردهای روش عناصر محدود
68
4-7- فرآیند تحلیل عناصر محدود
68
4-8- ملاحظات همگرایی در تحلیل عناصر محدود
69
4-9- خطاهای تحلیل عناصر محدود
70
4-10- معیارهای همگرایی یکنوا
70
4-10-1- معیارهای همگرایی یکنوا- شرط سازگاری
71
فصل پنجم- نتایج و بحث
72
5-1- مدل سازی سیستم غشایی
73
5-1-1- مدل سازی ریاضی
73
5-1-2- هندسه و مش بندی
74
5-1-3- نتایج مدلسازی برای سیستم استوانه ای
75
5-2- مدل سازی سازی غشای نانوفیلتراسیون الیاف توخالی
85
5-2-1-1- اثر دبی ورودی
91
5-3- مدل سازی به روش شبکه عصبی
93
5-4- مدل سازی با استفاده از انفیس
97
5-5- مدل سازی به روش نزدیک ترین همسایهها
102
فصل ششم-نتیجه گیری و پیشنهادها
108
6-1- نتیجه گیری
108
6-2- پیشنهادات
109
منابع و ماخذ
111
منبع:
[1] Koros, W. J., Ma, Y. H. and Shimidzu, T. (1996). “Terminology for membranes and membrane processes” IUPAC Recommendations., Vol. 68, No. 7:1479-1489.
[2] Branch, DW., Wheeler, BC., Brewer, GJ. And Leckband, D.E. (2001). "Long-term stability of microstamped sub-strates of polylysine and grafted polyethylene glycol in cell culture conditions," J. Biomaterials., Vol.22:1035-1047.
[3] Noble, R. D., Stern, S. A. (1995). Membrane Separations Technology: Principles and Applications, Amsterdam: Elsevier.
[4] Basalyga, D.M. and Latour, R.A. Jr. (2003). “Theoretical analysis of adsorption thermodynamics for charged peptide residues on SAM surfaces of varying functionality” Journal of Biomedical Materials Research., Vol.64A:120-130.
[5] Kavitskaya, A.A. (2005). “Separation characteristics of charged ultrafiltration membranes modified with the anionic surfactant Original” Desalination., Vol. 184, No: 1–3:409-414.
[6] Sethuraman, A., Han, M., Kane, R. S., Belfort, G. (2004). "Effect of Surface Wettability on the Adhesion of Proteins," Langmuir., Vol.20:7779-7788.
[7] Lu, X., Bian, X. and Shi, L. (2002). “Preparation and char- acterization of NF composite membrane” J. Membr. Sci., Vol.210:3-11.
[8] Hilal, N., Al-Zoubi, H., Darwish, N.A., Mohammad, A.W. and Arabi, M.A. (2004). “comprehensive review of nanofiltration membranes: Treatment, retreatment, modelling, and atomic force microscopy, Desalination., Vol.170: 281–308.
[9] Akbari, A., Remigy, J.C. and Aptel, P. (2002). “Treatment of textile dye effluent using a polyamide-based nanofiltration membrane” Chem. Eng. Proc. Vol.41: 601–609.
[10] Conlon, W.J., and McClellan, S.A. (1989). “Membrane softening: treatment process comes of age”, J. AWWA., 81:47-51.
[11] Schaep, J. B., Bruggen, Van der., Uytterhoeven, S. R., Croux, C. Vandecasteele, D., Wilms, E., Van Houtte and Vanlerberghe, F. (1998). “Removal of hardness from groundwater by nanofiltration” Desalination., Vol.119: 295-302.
[12] Rautenbach, IL., Linn, T. and Eilers, L. (2000). “Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF -potential and limits of the process” J. Membr. Sci., Vol.174:231-241.
[13] Schlichter, B., Mavrov, V. and Chmiel, H. (2003). “Study of a hybrid process combination ozonation and membrane filtration of model solution” Desalination., Vol.156:257-265.
[14] Hafiarle, A., Lemordant, D. and Dhahbi, M. (2000). “Removal of hexavalent chromium by nanofiltration” Desalination., Vol.13:305-312.
[15] Zarras, P., Vogl, O. (2000). ”POLYCATIONIC SALTS. 3. SYNTHESIS, STYRENE BASED TRIALKYLAMMONIUM SALTS AND THEIR POLYMERIZATION” Journal of Macromolecular Science, Part A: Pure and AppliedChemistry., Vol.37: 817 - 840.
[16] Tzannis, S. T., Hrushesky, W. J. M., Wood, P. A., Przybycien, T. M. (1997). “Adsorption of a Formulated Protein on a Drug Delivery Device Surface ” J. Colloid InterfaceSci., Vol.189:216-228.
[17] Bowen, W.R. and Mohammad, A.W. (1998). “Separation of C4 and C6 isomer mixtures and alcohol—water solutions by monolith supported B-ZSM-5 membranes ” Desalination., Vol.117:257–264.
[18] Bowen, W.R. and Mohammad, A.W. (1998). “Diafiltration by Nanofiltration: Prediction and Optimization” AIChE J., Vol.44:1799–1812.
[19] Nolan, C. M., Reyes, C. D., Debord, J. D., Garcia, A. J., Lyon, L. A. (2005). “Phase Transition Behavior, Protein Adsorption, and Cell Adhesion Resistance of Poly(ethylene glycol) Cross-Linked Microgel Particles’ Biomacromolecules., Vol.6: 2032-2039.
[20] Sun, Q., Su, Y., Ma, X., Wang, Y., Jiang, Z. (2006). “Improved antifouling property of zwitterionic ultrafiltration membrane composed of acrylonitrile and sulfobetaine copolymer” J. Membr. Sci., Vol.285: 299-305.
[21] X. Lu, X. Bian and L. Shi. (2002). “Preparation and Characterization of NF composite membrane” Journal of Membrane Science., Vol.210: 3-11.
[22] Al-Sofi, A. M. A. K., Al-Amoudi, A., Jamaluddin, A., Farooque, A., Rowaili, A., Dalvi, A., Kither, N., Mustafa, G. and Al-Tisan, I. (1998). “A new approach to thermal seawater desalination processes using nanofiltration membranes (part I)” Desalination., Vol.118:35-51.
[23] Al-Sofi, M. A. K., Hassan, A., Mustafa, G., Dalvi, A. and Kither, M. (1998). “Nanofiltration as a means of achieving higher TBT of 120 degrees C in MSF” Desalination., Vol.118:123-129.
[24] Al-Sofi, M. A. K. (2001). “Seawater desalination-SWCC experience and vision” Desalination, Vol.135:121-139.
[25] Hassan, A., Farooque, A., Jamaluddin, A., Al-Amoudi, A., Al-Sofi, M. A. K., Al-Rubaian, A., Kither, N., Al-Tisan, I. and Rowaili, A. (2000). “A demonstration plant based on the new NF-SWRO process” Desalination., Vol.131:157-171.
[26] Hassan, A., Al-Sofi, A. K., Al-Ajlan, A. M., Al-Azzaz, A. A. and AlMohammadi, A. S. (2002). “The New NF-SWRO operation increased significantly Ummujj “SWRO Plant output and Recovery” World Congress on Desalination and Water Reuse in Manamah, Bahrain.
[27] Eriksson, Peter., Kyburz, Markus. and Pergande, Wil. (2005). “NF membrane characteristics and evaluation for sea water processing applications,” Desalination., Vol.184:281-294.
[28] Sombekke, H. D. M., Voorhoeve, D. K. and P. Hiemstra. (1997). “Environmental impact assessment of groundwater treatment with nanofiltration” Desalination., Vol.113:293-296.
[29] Ruiz, P. Fu, H., Lozier, J., Thompson, K. and Spangenburg, v. (1995). “A pilot study on ground water natural organic removal by low pressure membranes” Desalination., Vol.102:47-56.
[30] Khalik, A. and Praptowidodo, V. S. (2000). “Nanofiltration for drinking water production from deep well water, Desalination” Vo.132:287-292.
[31] Gorenflo, A., Veliizquez-Padrh, D. and Frimmel, F. H., (2002). “Nanofiltration of a German ground water of high hardness and NOM content: performance and costs” Desalination., Vol.151:253-265.
[32] Van der Bruggen, B., Everaert, K., Wilms, D. and Vandecasteele, C. (2001). “The use of nanofiltration for the removal of pesticides fom ground water: an evaluation” Water Science Technology: Water Supply., Vol.1:99-106.
[33] Raff, O. and Wilken, R. D. (1999). “Removal of dissolved uranium by nanofiltration” Desalination., Vol.122:147-150.
[34] Thanuttamavong, M., Yamamotob, K., Oh, J., Chood, K., and Choi, S. (2002). “Rejection characteristics of organic and inorganic pollutant by ultra low pressure nanofiltration of suface water for drinking water treatment” Desalination., Vol.145:257-264.
[35] Vrouwenvelder, H. S., Van Paassen, J. A. M., Folmer, H. C., Hofman, M. M. Nederlof, JA. M. H. and Van der Kooij, D. (1998). “Biofouling of membranes for drinking water production” Desalination., Vol.118:157-166.
[36] Linde, K. and Jonsson, A. S. (1995). “Nanofiltration of salt solutions and land fill leachate” Desalination ., Vol.103: 223-232.
[37] Kharaka, Y. K., Ambats, G., Presser, T. and Davis, v. (1996). “Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes” Applied Geochemistry., Vol.11:797-802.
[38] Bowen, W. R., Cassey, B., Jones, P., and Oatley, D. L. (2004). “Modeling the performance of membrane nanofiltration-application to an industrially relevant separation” Journal of Membrane Science, Vol.242:211-220.
[39] Oatley, D. L., Cassey, B., Jones, P. and Bowen, W. R. (2005). “Modeling the performance of membrane nanofiltration- recovery of a high value product from a process waste stream” Chemical Engineering Science, Vol.60:1953-1964.
[40] Wang, K. Y., and Chung, v. (2005). “The characterization of flat composite nanofiltration membranes and their applications in the separation of cephalexin” Journal of Membrane Science, Vol.247:37-50.
[41] Zhu, A., Zhu, W., Wu, v. and Jing, v. (2003). “Recovery of clindamycin from fermentation wastewater with nanofiltration membranes” Water Research, Vol.37: 3718-3732.
[42] Rosa, M. J. and Norberta, M., Pinho, de. (1995). “The role of ultrafiltration and nanofiltration on the minimization of environmental impact of bleached pulp effluents” Journal of Membrane Science, Vol.102:209-221.
[43] Hagg, M. B., (1998). “Membranes in chemical processing: A review of applications and novel developments” Separation and Purification Methods., Vol .27: 51-168.
[44] Timmer, J. M. K., Speelmans, M. P. J., and Van der Horst, H. C. (1998). “Separation of amino acids by nanofiltration and ultrafiltration membranes” Separation and Purification Technology., Vol.14:133-144.
[45] Bes-Pia, A., Mendoza-Roca, J., Roig-Alcover, L., Iborra-Clar, A., IborraClar, M. and Alcaina-Miranda, M. (2003). “Comparion of nanofiltration and ozanation of biologically treated textile waste water reuse for it reuse in the industry” Desalination., Vol.157:81-86.
[46] Cassano, A., Drioli, E. and Molinari, R. (1997). “Recovery and reuse of chemicals in unhairing, degreasing and chromium tanning processes by membranes” Desalination., Vol.113:251-261.
[47] Hafiarle, A., Lemordant, D. and Dhahbi, M. (2000). “Removal of hexavalent chromium by nanofiltration” Desalination., Vol.13:305-312.
[48] Ahn, K. H., Cha, H. Y., Yeom, I. T. and Song, K. G. (1998). “Application of nanofiltration for recycling of paper regeneration wastewater and characterization of filtration resistance” Desalination., Vol.119:169-176.
[49] Alkhatim, H. S., Alcaina, M. I., Soriano, E., Iborra, M. I., Lora, J. and Arnal, J. (1998). “Treatment of whey effluents from diary industries by nanofiltration membranes” Desalination, Vol.119:177-184.
[50] Vellenga, E., and Tragardh, G. (1998). “Nanofiltration of combined salt and sugar solutions: coupling between retentions” Desalination., Vol.120:211-220.
[51] Cartier, S., Theoleyre, M. A., and Decloux, M. (1997). “Treatment of sugar decolorizing resin regeneration waste using nanofiltration” Desalination, Vol.113: 7-17.
[52] Timmer, J. M. K., Van der Horst, H. C., and Robbertsen, T. (1994). “Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration” Journal of Membrane Science., Vol.92:185-197.
[53] Bowen, W.R., Mohammad, A.W., Hilal, N. (1997). “Characterisation of nanofiltration membranes for predictive purposes use of salts, uncharged solutes and atomic force microscopy” Journal of Membrane Science., Vol.126:91–105.
[54] Bowen, W.R., Mohammad, A.W. (1998). “Diafiltration by nanofiltration: Prediction and Optimisation” A.I.Ch.E. Journal, Vol.44, No.8:1799–1812.
[55] Ali, N., Mohammad, A. W. and Ahamad, A. L. (2004). “Use of nanofiltration predictive model for membrane selection and system cost assessment” Separation and Purification Technology., Vol.41:29-37.
[56] Bandini, S., and Vezzani, D. (2003). “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization” Chemical Engineering Science, Vol.58:3303-3326.
[57] Szymczyk, A., Labbez, C., Fievet, P., Videonne, A., Foissy, A. and Pagetti, J. (2003). “Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes” Advanced in Colloid and Interface Science., Vol.103:77-94.
[58] Fievet, P., Labbez, C., Szymczyk, A., Vidonne, A., Foissy, A. and Pagetti, J. (2002). “Electrolyte transport through amphoteric nanofiltration membranes” Chemical Engineering Science., Vol.57:2921–2931.
[59] Tsuru, T., Urairi, M., Nakao, S., Kimura, S. (1991). “Reverse osmosis of single and mixed electrolytes with charged membranes—experiment and analysis” J. Chem. Eng. Jpn. Vol.24:518-524.
[60] Garcia-Aleman, J., Dickson, J.M. (2004). “Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions” J. Memb. Sci. Vol.235:1-13.
[61] Geraldes, Vitor., Maria, Ana., Alves, Brites. (2008). “Computer program for simulation of mass transport in nanofiltration membranes” journal of Membrane Science Vol.321:172–182.
[62] Meyer, K.H. and Sievers, J.F., Helv. (1936). “Permeability of membranes. I. Theory of ionic permeability” Chim. Acta, Vol.19:64-, 665.
[63] Morrison, Jr., and Osterle, J.F. (1965). “Electrokinetic energy conversion in ultraline capillaries” J. Chem. Phys., 43(6):2111-2116.
[64] Gross, R.J., and Osterle, J.F. (1968). “Membrane transport characteristics of ultrafine capillaries” J. Chem. Phys., Vol.49 (1): 228-234.
[65] Probstein, F., Sonin, A.A. and Yung, D. (1973) “Brackish water salt rejection by porous hyper-filtration membranes” Desalination., Vol.13: 303-316.
[66] Jacazio, G., Probstein, R.F., Sonin, A.A. and Yung, D. (1972). “Eiectrokinetic salt rejection in hyper-filtration through porous materials. Theory and experiment” J. Phys. Chem., Vol.76(26):4015-
[67] Levine, S., JMarriott, .R., Neale, G. and Epstein, N. (1975). “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta- potentials” J. Colloid Interface Sci., Vol.52(1):136-149.
[68] Xiao-Lin, Wang., Toshinori, Tsuru., Shin-ichi, Nakao., Shoji, Kimura. (1995). “Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer- Sievers model” Journal of Membrane Science., Vol.103:117-133.
[69] Sengupta, A., Reed, B.W., Seibert, F. (1994). “Liquid–liquid extraction studies on semi-commercial scale using recently commercialized large membrane contactors and systems” The AIChE Annual Meeting, San Francisco., CA, 583.
[70] Hollowfibermembrane contactors Alan Gabelmana, Sun-Tak Hwangb
Journal of Membrane Science,Volume 159, Issues 1–2, 1 July 1999, Pages 61–106
[71] Reed, B.W., Klassen, R.A., Jansen, E., Akkerhuis, J.J.,. Bult, B.A, Oesterholt, F.I.H.M. (1994). “Removal of hydrocarbons from wastewater by membrane extraction” The AIChE Spring National Meeting, Atlanta, GA, 17–21.
[72] Basu, R., Sirkar, K. K. (1991). “Hollow fiber contained liquid membrane separation of citric acid” AIChE Journal., Vol.37(3):383–393.
[73] Matsumura, M., Mattiasson, B., Holst, O. (1991). “Extractive Bioconversions” New York: Marcel Dekker.
[74] Brose, D.J. (1993). “Novel Process Technology for Utilization of Fruit and Vegetable Waste” SBIR Phase I Project, Washington, DC:USDA/ CSRC.
[75] Zhang Qi, E.L. Cussler. (1985). “Microporous hollow fibers for gas absorption: II. Mass transfer across the membrane” Journal of Membrane Science., Vol. 23(3):333–345.
[76] Mohamed, H. Al-Marzouqi, Muftah, H. El-Naas, Sayed, A.M. Marzouk, Mohamed, Al-Zarooni, A., Nadia Abdullatif, Rami Faiz. (2008). “Modeling of CO2 absorption in membrane contactors” Separation and Purication Technology., Vol. 59: 286—293.
[77] Wang, K.Y., Chung, Tai-Shung. (2006) “Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate” Journal of Membrane Science., Vol.281 (1–2):307–315.
[78] Geraldes, Vitor., Semi, Viriato., de Pinho, Maria Norberta. (2001). “Flow and mass transfer modelling of nanofiltration” Journal of Membrane Science., Vol.191: 109-128.
[79] Rahimi, M., Madaeni, S.S., Abbas, K. (2005). “CFD modeling of permeate flux in cross-flow microfiltration membrane” Journal of Membrane Science., Vol.255:23-31.
[80] Bowen, W.R., Meirion, G., Jones, J.S., Welfoot, N.S. Yousef. (2000). “Predicting salt rejections at nanofiltration membranes using artificial neural networks” Desalination., Vol.129:147-162.
[81] Grishma, R., Shetty, S.C. (2003). “Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks” Journal of Membrane Science., Vol.217:69-86.
[82] Jain, A.K., Jianchang, Mao., Mohiuddin, K.M. (1996). “Artificial neural networks: a tutorial” IEEE(Computer)., Vol.28:417-425.
[83] Kia S.M. (2010). Soft Computing with Matlab(4 in 1). , Tehran :kian rayane sabz.
[84] D.J. Nefske, J.A. Wolf Jr, L.J. Howell. (1982). “Structural-acoustic finiteelement analysis of the automobile passenger compartment: A review of current practice” Journal of Sound and Vibration. Vol.80(2):247–266.
[85] Reddy, J. N. (2004). Introduction to the Finite Element Method. USA:Oxford University Press.
[86] Al-Marzouqi, M., El-Naas, M., Marzouk, S., Abdullatif, N. (2008). “Modeling of chemical absorption of CO2 in membrane contactors”, Separation and Purification Technology Vol.62:499–506.
[87] Boumediene, A., Abdellah L., Brahim G., and Abdessalam, A. A. (2009). “euro-Fuzzy DC Motor Speed Control Using Particle Swarm Optimization” Leonardo Electronic Journal of Practices and Technologies., Vol.15:1-18.