فهرست:
فصل 1: مقدمه 1
1-1- مقدمه. 2
فصل 2: مروری بر پیشینه تحقیق 6
2-1- مقدمه. 7
2-2- ریفرمینگ هیدروکربنها 7
2-2-1- ریفرمینگ با بخار آب... 7
2-2-2- ریفرمینگ اکسایش جزئی... 9
2-2-3- ریفرمینگ خودگرمازا 11
2-3- مکانیزم واکنش برای ریفرمینگ متان.. 12
2-3-1- مدلهای سینتیکی برای ریفرمنیگ متان.. 14
2-3-2- مدلهای سینتیکی برای احتراق متان.. 18
2-3-3- مدلهای سینتیکی برای واکنش شیفت آب- گاز. 20
2-4- راکتورهای مورد استفاده برای فرآیند ریفرمینگ..... 21
2-5- مدلسازیهای صورت گرفته برای راکتورهای مونولیتی... 22
2-6- نتیجه گیری... 33
فصل 3: ارائهی مدلسازی 34
3-1- مقدمه. 35
3-2- مشخصات راکتور مونولیتی مدلسازی شده. 35
3-3- فرضیات و معادلات استفاده شده در مدلسازی... 37
3-3-1- مدلسازی مکانیزم واکنش..... 43
3-3-2- روابط سینتیکی برای ریفرمینگ خودگرمازای متان بر روی کاتالیست روتنیم 44
3-4- نتیجهگیری... 47
فصل 4: نتایج و بحث 49
4-1- مقدمه. 50
4-2- بررسی صحت مدلسازی... 50
4-1-1- مقایسه با نتایج آزمایشگاهی... 50
4-3- اثر میزان اکسیژن ورودی... 57
4-4- اثر میزان بخارآب ورودی... 62
4-5- بررسی اثر دمای گاز ورودی... 69
4-6- نتیجهگیری... 75
فصل 5: جمعبندی و پیشنهادات 76
5-1- مقدمه. 77
5-1-1- پیشنهادها 78
مراجع 79
پیوست
منبع:
[1]] [ م. صفدرنژاد، مرور جامع روشهای تولید و خالصسازی هیدروژن برای استفاده در محل در پیلهای سوختی، سمینار کارشناسی ارشد، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، 1388.
[[1]] S. Hussain, “A numerical evaluation of the design of an autothermal reformer for the onboard production of hydrogen from iso-octane”, M.Sc. dissertation, Department of Mechanical and Materials Engineering, Queen’s University, 2009.
] [1] [ م. زاهدینژاد، مدلسازی سینتیکی ریفرمینگ خودگرمازا (ATR)، رساله کارشناسی ارشد، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، 1386.
[[1]] Deutschmann, O. Detailed Chemistry in CFD. Available at http://www.detchem.com/mechanisms/ (accessed August 28, 2007).
[[1]] De Groote, A. M., Froment, G. F. (1996) “Simulation of the catalytic partial oxidation of methane to synthesis gas”, Applied Catalysis. A, General, 138, 245-264.
[[1]] Akers W. W., Camp D. P. (1955) "Kinetics of the methane-steam reaction", AICHE J., Volume 1, No. 4, pp. 471-475.
[[1]]Bodrov I. M., Apelba'oom L. O., T'yomkeen M. I. (1965), “Kinetics of steam-methane reaction on nickel surface”, Journal of Catalysis, Volume 4, No. 3, Page 413.
[[1]] Agnelli M. E., Ponzi E. N., Yeramian A. A. (1987) "Catalytic deactivation on methane steam reforming catalysts. 2. Kinetic study", Ind. Eng. Chem. Res. Volume 26, No. 8, pp. 1707-1713.
[[1]] Xu J., Froment G. (1989) "Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics", AICHE J., Volume 35, No. 1, pp. 88-96.
[[1]] Numaguchi T., Kikuchi K. (1988) "Intrinsic kinetics and design simulation in a complex reaction network, steam methane reforming", Chem. Eng. Sci., Volume 43, No. 8, pp. 2295-2301.
[[1]] Castro Luna A. E., Becerra A. M. (1997) "Kinetics of methane steam reforming on a Ni on Alumina-Titania catalyst", Reac. Kinetic. Catal. Lett., Volume 61, No. 2, pp. 369-374.
[[1]] Hou K., Hughes R. (2001) "The kinetics of methane steam reforming over a Ni/α-Al2O3 catalyst", Chem. Eng. J., Volume 82, pp. 311-328.
[[1]] Hoang D. L., Chan S. H., Ding O. L. (2005) "Kinetic and modeling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support", Chem. Eng. J., Volume 112, pp. 1-11.
[[1]]Barrio V.L., Schaub G., Rohde M., Rabe S. (2007) “Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization” International Journal of Hydrogen Energy 32, 1421 – 1428.
[[1]]Trimm, D. L., Lam, C-W. (1980) “The combustion of methane on platinum-alumina fibre catalysts—I. Kinetics and mechanism”, Chemical Engineering Science, 35,1405–1413.
[[1]] De Smet, C. R. H., De Croon, M. H. J. M., Berger, R. J., Marin, G. B., Schouten, J. C. (2001) “Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells” Chemical Engineering Science, 56, 4849–4861.
[[1]] Ma, L., Trimm, D. L., Jiang, C. (1996) “The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. the kinetics of the catalytic oxidation of light hydrocarbons”, Applied catalysis. A: General, 138, 275- 283.
[[1]] Grenoble, D. C., Estadt, M. M., Ollis, D. F. (1981) “The chemistry and catalysis of the water gas shift reaction. 1. The kinetics over supported metal-catalysts”, Journal of Catalysis, 67, 90-102.
[[1]] Wheeler, C., Jhalani, A., Klein, E. J., Tummala, S., Schmidt, L. D. (2004), “The water–gas-shift reaction at short contact times”. Journal of Catalysis, 223, 191–199.
[[1]] Veser, G., Frauhammer, J. (2000). Modelling steady state and ignition during catalytic methane oxidation in a monolith reactor. Chemical Engineering Science, 55, 2271-2286.
[[1]] Canu, P., Vecchi, S. (2002). “CFD simulation of reactive flows: catalytic combustion in a monolith”, AIChE Journal, 48, 2921-2935.
[[1]] Ghadrdan M., Mehdizadeh H., (2008), “Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane”, Excerpt from the Proceedings of the COMSOL Conference, Hannover.
[[1]] Stutz M.J, Poulikakos D., (2005) “Effects of microreactor wall heat conduction on the reforming process ofmethane”, Chemical Engineering Science 60, 6983 – 6997.
[[1]] Chaniotis K., Poulikakos D. (2005), “ Modeling and optimization of catalytic partial oxidation methane reforming for fuel cells”, A Journal of Power Sources 142,184–193.
[[1]] Shi. L, Bayless D. J., Prudich M.,(2008), “ A model of steam reforming of iso-octane: The effect of thermal boundary conditions on hydrogen production and reactor temperature”, International journa l of hydrogen energy, 33, 4577 – 4585.
[[1]]Hayes R.E., Kolaczkowski S.T., (1999), “A study of Nusselt and Sherwood numbers in a monolith reactor”, Catalysis Today 47, 295-303
[[1]] Di Benedetto A., Sarli V.D, (2011), “CFD Modeling and Simulation of a Catalytic Micro-monolith”, international journal of chemical reactor engineering, Volume 9, Article A21.
[[1]]Deutschmann O. and Schmidt L.D (1998), “Two-dimensional modeling of partial oxidation of methane on rhodium in a short contact time reactor”, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, pp. 2283–2291.
[[1]]Shi Ding, Changning Wu, Yinhong Cheng, Yong Jin, Yi Cheng (2010), “Analysis of catalytic partial oxidation of methane on rhodium-coated foam monolith using CFD with detailed chemistry”, Chemical Engineering Science 65, 1989–1999.
[[1]] Hong Mei, Chengyue Li, Shengfu Ji, Hui Liu (2007), “Modeling of a metal monolith catalytic reactor for methane steam reforming–combustion coupling”, Chemical Engineering Science 62, 4294 – 4303.
[[1]] Shi. L, Bayless D. J., Prudich M.,(2009), “A CFD model of autothermal reforming”, International journa l of hydrogen energy, 34, 7666 – 7675.
[[1]] Hui Liu, Jundong Zhao, Chengyue Li, Shengfu Ji, (2005), “Conceptual design and CFD simulation of a novel metal-based monolith reactor with enhanced mass transfer”, Catalysis Today 105, 401–406.
[[1]] Rabe S., Truong T.B., Vogel F. (2007) “Catalytic autothermal reforming of methane: Performance of a kW scale reformer using pure oxygen as oxidant”, Applied Catalysis A: General, 318, 54–62.
[[1]] Fluent, Inc. (2006). FLUENT 6.3 User's Guide. Lebanon, NH.
[[1]] Quiceno, R., Perez-Ramirez, J., Warnatz, J., Deutschmann, O. (2006). “Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: detailed gas-phase and surface chemistries coupled with 3D flow field simulations”, Applied Catalysis. A, General, 303, 166-176.
[36] M.H. Akbari, A.H. Sharafian Ardakani, M. Andisheh Tadbir, “A micro reactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications”, Chem. Eng. J., (2011), 166, 1116–1125.
[37] M.Zahedi Nezhad, S. Rowshanzamir, M.H. Eikani " Autothermal reforming of methane to synthesis gas: Modeling and simulation", Int. J. Hydrogen Energy, (2009). 292-300.
[38] D.L. Hoang, S.H. Chan, “Modeling of a catalytic autothermal methane reformer for fuel cell applications”, Appl. Catal., A. 268 (2004) 207–216.
[39] J. Xuan, M. K.H. Leung, D. Y.C. Leung, Meng Ni “Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas”, Int. J. Hydrogen Energy, (2009). 34, 9076–9086.
[40] A. Fazeli and M. Behnam “CFD Modeling of Methane Autothermal Reforming in a Catalytic Micro reactor”, Int. J. Chem. React. Eng., (2007), 5, article A93.
[41] D.L. Hoang, S.H. Chan, O.L. Ding, “Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support”, J. Power Sources, (2006), 159, 1248–1257.
[42] P. M. Biesheuvel, G. J. Kramer "Two-Section Reactor Model for Autothermal Reforming of Methane to Synthesis Gas", AIChE J. (2003), 49, 7.