فهرست:
فصل اول: طرح پژوهش
1-1- مقدمه................ 2
1-2- بیان مسئله......................................................................................................................................3
1-3- ضرورت تحقیق 7
1-4- اهداف تحقیق.. 9
1-4-1- هدف کلی.. 9
1-4-2- اهداف اختصاصی.. 9
1-5 - فرضیات تحقیق.. 10
1-6- قلمرو تحقیق.. 10
1-7- محدودیت های تحقیق.. 11
1-8- تعریف عملیاتی متغیر های تحقیق.. 11
1-8-1- متغیرمستقل.. 11
1-8-2- متغیرهای وابسته. 12
فصل دوم: کلیات پژوهشی
مقدمه .............................................................................................................................................14
2-1- اساس ارتعاشات مکانیکی.. 14
2-2- ارتعاشات کل بدن. 16
2-3- نیروهای وارد بر استخوان. 18
2-4- مقاومت مکانیکی استخوان. 21
2-4-1- بازسازی استخوان. 21
2-4-2- سازوکار بروز پوکی استخوان. 21
2-4-3- پاسخ استخوان نسبت به بارگذاری. 23
2-4-4- مکانیسم انطباق مکانیکی استخوان. 25
2-4-5- پاسخ عضله به بارگذاری. 30
2-4-6- تست مکانیکی استخوان. 31
2-5- ساختمان میکروسکوپی استخوان. 34
2-5-1- سلول های پوششی استخوان. 36
2-5-2- ترکیب استخوان. 37
2-6- ساختمان ماکروسکوپی استخوان. 39
2-6-1- استخوان متراکم و اسفنجی.. 39
2-6-2- استخوان از لحاظ تکاملی.. 40
2-7- کلسیم........... 41
2-8- پیشینه تحقیق.. 42
2-8 - جمع بندی. ... 49
فصل سوم: تبیین پژوهش
مقدمه............................. 52
3-1- تهیه و نگهداری رت.. 52
3-1-1- نمونه مورد مطالعه. 52
3-1-2 - قفس رت ها 53
3-1-3 - خوراک رت ها 53
3-1-4 - سیستم روشنایی و تهویه. 54
3-1-5- رطوبت و دمای محیط... 54
3-2-1- بیهوشی رت.. 54
3-2-2- اجرای جراحی.. 55
3-3- تحریک مکانیکی.. 56
3-3-1 - دستگاه تحریک مکانیکی استخوان. 56
3-3-2- روش اجرا 58
3-3-3- نمونه برداری. 61
3-4- ارزیابی استخوان. 62
3-4-1- ارزیابی خمشی استخوان. 62
3-4-2- ارزیابی تراکم یون کلسیم.. 65
3-4-3- ارزیابی هیستومورفومتری استخوان. 67
3-5- روش تجزیه و تحلیل آماری داده ها 69
فصل چهارم: تجزیه و تحلیل پژوهش
مقدمه................................ 71
4-1- آمار توصیفی. 72
4-2- آمار استنباطی.. 73
4-3- وزن بدن.......... 74
4-4- مقاومت خمشی.. 76
4-4-1 - استرس.... 76
4-4-2 - سفتی... 79
4-5-3- انرژی جذب شده. 84
4-5-4- جابجایی... 88
4-5-5- جمع بندی.. 91
4-6- تراکم یون کلسیم.. 91
4-7- هیستومورفومتری استخوان متراکم و اسفنجی.. 93
4-7-1 - جمع بندی.. 96
فصل پنجم: استنباط و نتیجهگیری
مقدمه................................ 103
5-1- خلاصه تحقیق 103
5-2- بحث................... 104
5-3- نتیجه گیری..... 116
5-4- پیشنهاد های تحقیق.. 116
5-4-1- پیشنهاد کاربردی. 116
5-4-2- پیشنهاد پژوهشی.. 116
منابع........................ 118
منبع:
1. Lash RW, Nicholson JM, Velez L, Van Harrison R, McCort J. Diagnosis and management of osteoporosis. Primary Care: Clinics in Office Practice. 2009;36(1):181-98.
2. Melton JL. Perspectives: how many women have osteoporosis now? Journal of Bone and Mineral Research. 1995;10(2):175-7.
3. Siris E, Adler R, Bilezikian J, Bolognese M, Dawson-Hughes B, Favus M, et al. The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporosis International. 2014
4. Huang T.H. LSC, Chang F.L., Hsieh S.S., Liu S.H., Yang R.S. Effects of different exercise modes on mineralization, structure, and Biomechanical properties of growing bone. J Appl Physiol Bone. 2003(95):300-7.
5. Comelekoglu U, Bagis S, Yalin S, Ogenler O, Yildiz A, Sahin NO, et al. Biomechanical evaluation in osteoporosis: ovariectomized rat model. Clinical rheumatology. 2007;26(3):380-4.
6. Bagi C, Wilkie D, Georgelos K, Williams D, Bertolini D. Morphological and structural characteristics of the proximal femur in human and rat. Bone. 1997;21(3):261-7.
7. Albright J, Skinner H. Bone: remodeling dynamics. The scientific basis of orthopaedics Appleton-Century-Crofts, New York. 1979:185-229.
8. Frost H. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff's law: the bone modeling problem. The Anatomical Record. 1990;226(4):403-13.
9. Wolff J, Maquet P, Furlong R. The law of bone remodelling: Springer-Verlag Berlin; 1986.
10. Warner S, Shea J, Miller S, Shaw J. Adaptations in cortical and trabecular bone in response to mechanical loading with and without weight bearing. Calcified tissue international. 2006;79(6):395-403.
11. Lehtonen‐Veromaa M, Möttönen T, Svedström E, Hakola P, Heinonen O, Viikari J. Physical activity and bone mineral acquisition in peripubertal girls. Scandinavian journal of medicine & science in sports. 2000;10(4):236-43.
12. Vuori I. Health benefits of physical activity with special reference to interaction with diet. Public health nutrition. 2001;4(2b):517-28.
13. Daley MJ, Spinks WL. Exercise, mobility and aging. Sports Medicine. 2000;29(1):1-12.
14. Carter ND, Kannus P, Khan K. Exercise in the prevention of falls in older people. Sports Medicine. 2001;31(6):427-38.
15. Heinonen A, Kannus P, Sievänen H, Oja P, Pasanen M, Rinne M, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. The Lancet. 1996;348(9038):1343-7.
16. Cardinale M, Rittweger J. Vibration exercise makes your muscles and bones stronger: fact or fiction? British Menopause Society Journal. 2006;12(1):12-8.
17. Cardinale M, Bosco C. The use of vibration as an exercise intervention. Exercise and sport sciences reviews. 2003;31(1):3-7.
18. Cardinale M, Wakeling J. Whole body vibration exercise: are vibrations good for you? British journal of sports medicine. 2005;39(9):585-9.
19. Rubin C, Judex S, Qin Y-X. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age and ageing. 2006;35(suppl 2):ii32-ii6.
20. Cardinale M, Pope M. The effects of whole body vibration on humans: dangerous or advantageous? Acta Physiologica Hungarica. 2003;90(3):195-206.
21. Judex S, Zernicke R. Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone? Bone. 2000;26(2):153-9.
22. Robling A, Duijvelaar K, Geevers J, Ohashi N, Turner C. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone. 2001;29(2):105-13.
23. Fritton SP, J McLeod K, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. Journal of biomechanics. 2000;33(3):317-25.
24. Judex S, Boyd S, Qin Y-X, Turner S, Ye K, Müller R, et al. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Annals of biomedical engineering. 2003;31(1):12-20.
25. Tezval M, Biblis M, Sehmisch S, Schmelz U, Kolios L, Rack T, et al. Improvement of femoral bone quality after low-magnitude, high-frequency mechanical stimulation in the ovariectomized rat as an osteopenia model. Calcified tissue international. 2011;88(1):33-40.
26. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism: Low mechanical signals strengthen long bones. Nature. 2001;412(6847):603-4.
27. Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. European journal of applied physiology. 2010;108(5):877-904.
28. Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. Journal of biomechanics. 2007;40(6):1333-9.
29. Oxlund B, Ørtoft G, Andreassen TT, Oxlund H. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone. 2003;32(1):69-77.
30. Adams JB, Edwards D, Serviette D, Bedient AM, Huntsman E, Jacobs KA, et al. Optimal frequency, displacement, duration, and recovery patterns to maximize power output following acute whole-body vibration. The Journal of Strength & Conditioning Research. 2009;23(1):237-45.
31. Rittweger J. Phyysiological Targets of Artificial Gravity: Adaptive Processes in Bone. Artificial Gravity: Springer; 2007. p. 191-231.
32. Vahid Dastjerdi MMoH. International Workshop on the prevention, diagnosis and treatment of osteoporosis - Tehran University of Medical Sciences. Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences Annual Meeting. 2010.
33. Friedman SM, Mendelson DA. Epidemiology of Fragility Fractures. Clinics in geriatric medicine. 2014.
34. Nanninga GL, Panneman MJ, van der Elst M, Hartholt KA. Increasing rates of pelvic fractures among older adults: The Netherlands, 1986–2011. Age and ageing. 2014:aft212.
35. Salkeld G, Cameron ID, Cumming R, Easter S, Seymour J, Kurrle S, et al. Quality of life related to fear of falling and hip fracture in older women: a time trade off studyCommentary: Older people's perspectives on life after hip fractures. Bmj. 2000;320(7231):341-6.
36. prevention NOFCsgt, http://nof.org/hcp/resources/913. atoo, 2013 AO. 2013.
37. Korhonen N, Niemi S, Parkkari J, Sievänen H, Palvanen M, Kannus P. Continuous decline in incidence of hip fracture: nationwide statistics from Finland between 1970 and 2010. Osteoporosis International. 2013;24(5):1599-603.
38. Kannus P, Palvanen M, Niemi S, Sievänen H, Parkkari J. Rate of proximal humeral fractures in older Finnish women between 1970 and 2007. Bone. 2009;44(4):656-9.
39. خلدی،ناهید. اصول تغذیه رابینسون. انتشارات سالمی، چاپ هفتم. 1386:150.
40. Christiansen BaS, M.J. The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. 2006;34 (7),1149–1156.
41. Bouillon R KFR, Jiang Y,, editor. The American Society for Bone and Mineral R Annual Meeting; 2004; seattle: Bone Key.
42. Rubinacci A, Marenzana M, Cavani F, Colasante F, Villa I, Willnecker J, et al. Ovariectomy sensitizes rat cortical bone to whole-body vibration. Calcified tissue international. 2008;82(4):316-26.
43. Brouwers JE, van Rietbergen B, Ito K, Huiskes R. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro‐CT. Journal of Orthopaedic Research. 2010;28(1):62-9.
44. van der Jagt OP, van der Linden JC, Waarsing JH, Verhaar JA, Weinans H. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats. Journal of bone and mineral metabolism. 2012;30(1):40-6.
45. Hamill J, Knutzen KM. Biomechanical basis of human movement: Lippincott Williams & Wilkins; 2006.
46. Cowin SC. Bone mechanics handbook. 2001.
47. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system: Lippincott Williams & Wilkins; 2001.
48. Vaananen H, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. Journal of cell science. 2000;113(3):377-81.
49. Lian JB, Stein GS. Osteoblast biology. Osteoporosis. 2008;1:21-71.
50. Turner RT, Sibonga JD. Effects of alcohol use and estrogen on bone. Alcohol research and health. 2001;25(4):276-81.
51. Bonjour J-P, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud publica de Mexico. 2009;51:s5-s17.
52. Graci S, Rao L, DeMarco C. The Bone-Building Solution: John Wiley & Sons; 2009.
53. McKinley MP, O'loughlin VD. Human anatomy: McGraw-Hill Higher Education; 2006.
54. Wolff L. The law of bone remodelling: Translated by P. Maquet and R. Furlong, Springer, 1986, DM 188, 126 pp. Elsevier; 1892.
55. O'connor J, Lanyon L, MacFie H. The influence of strain rate on adaptive bone remodelling. Journal of biomechanics. 1982;15(10):767-81.
56. Turner C. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399-407.
57. Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews. 2010;90(1):75-85.
58. Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012;503(2):179-93.
59. Frost HM. The laws of bone structure: Thomas Springfield; 1964.
60. Isaksson H. Recent advances in mechanobiological modeling of bone regeneration. Mechanics Research Communications. 2012;42:22-31.
61. Lanyon LE, Rubin C. Static vs dynamic loads as an influence on bone remodelling. Journal of biomechanics. 1984;17(12):897-905.
62. Turner CH, Pavalko FM. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. Journal of Orthopaedic Science. 1998;3(6):346-55.
63. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, McLeod K. Prevention of postmenopausal bone loss by a low‐magnitude, high‐frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. Journal of Bone and Mineral Research. 2004;19(3):343-51.
64. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. Journal of Bone and Mineral Research. 1997;12(9):1480-5.
65. Burr D, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30(5):781-6.
66. Bronner F, Farach-Carson MC, Rodan G. Bone formation: Springer; 2004.
67. Turner CH, Anne V, Pidaparti R. A uniform strain criterion for trabecular bone adaptation: Do continuum-level strain gradients drive adaptation? Journal of Biomechanics. 1997;30(6):555-63.
68. Pauwels F, Maquet P, Furlong R. Biomechanics of the locomotor apparatus: contributions on the functional anatomy of the locomotor apparatus: Springer-Verlag New York; 1980.
69. Garman R, Rubin C, Judex S. Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One. 2007;2(7):e653.
70. Boccaccio A, Pappalettere C. Mechanobiology of Fracture Healing: Basic Principles and Applications in Orthodontics and Orthopaedics. 2011.
71. Engel K, Herpers R, Hartmann U. Biomechanical Computer Models, Theoretical Biomechanics, Vaclav Klika, ed. Tech, New York. 2011.
72. Nigg B, Wakeling J. Impact forces and muscle tuning: a new paradigm. Exercise and sport sciences reviews. 2001;29(1):37-41.
73. Cardinale M, Lim J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. The Journal of Strength & Conditioning Research. 2003;17(3):621-4.
74. Rittweger J, Mutschelknauss M, Felsenberg D. Acute changes in neuromuscular excitability after exhaustive whole body vibration exercise as compared to exhaustion by squatting exercise. Clinical physiology and functional imaging. 2003;23(2):81-6.
75. W.S.S. J. The Skeletal tissues in cell and tissue biology, Atextbook of histology. Urban and Schwarzenberg: WeissL.,Ed; 1988.
76. Frost H. Introduction to a new skeletal physiology. Vols I, II Pajaro Group, Pueblo, CO. 1995.
77. Cowin SC. Bone Mechanics Hand Book.second ed. Florida: CRC Press; 2001.
78. Eriksen EF, Axelrod DW, Melsen F. Bone histomorphometry: Raven Press New York; 1994.
79. S.C. C. Bone Mechanics Handbook. Florida: 2th ed.CRC Press; 2001.
80. Nordin B. Calcium and osteoporosis. Nutrition. 1997;13(7):664-86.
81. Junqueria LC, Carneiro J. Basic histology text and atlas. McGraw-Hill Medical Publishing Division USA; 2005.
82. Whitney E, Rolfes SR. Understanding nutrition: Cengage Learning; 2007.
83. Rubin C, Turner AS, Müller R, Mittra E, McLeod K, Lin W, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. Journal of Bone and Mineral Research. 2002;17(2):349-57.
84. Oxlund B, Ortoft, G., Andreassen, T.T., Oxlund, H.,. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femurand tibia associated with ovariectomy of adult rats. Bone. 2003: 32 (1), 69–77.
85. Sun D, Zhao Y, Tan L, Zhu D, Gao J, Zhang X, editors. Mechanical properties in the ovariectomized rat model of osteoporosis after continuous and intermittent vibration. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on; 2010: IEEE.
86. Ozcivici E, Garman R, Judex S. High-frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. Journal of biomechanics. 2007;40(15):3404-11.
87. Tezval M BM, Sehmisch S, Schmelz U, Kolios L, Rack T, Stuermer KM, Stuermer EK. Improvement of femoral bone quality after low-magnitude, high-frequency mechanical stimulation in the ovariectomized rat as an osteopenia model. Calcif Tissue Int. 2011:88(1):33-40.
88. Brouwers JE vRB, Ito K, Huiskes R. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J Orthop Res. 2010:28(1): 62-9.
89. Lynch MA, Brodt MD, Silva MJ. Skeletal effects of whole‐body vibration in adult and aged mice. Journal of Orthopaedic Research. 2010;28(2):241-7.
90. Rubin CT, Lanyon LE. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. Journal of Theoretical Biology. 1984;107(2):321-7.
91. Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. The FASEB Journal. 2001;150(12): 22225-9.
92. Sehmisch S, Galal R, Kolios L, Tezval M, Dullin C, Zimmer S, et al. Effects of low-magnitude, high-frequency mechanical stimulation in the rat osteopenia model. Osteoporosis international. 2009;20(12):1999-2008.
93. Verschueren SM, Roelants M, Delecluse C, Swinnen S, Vanderschueren D, Boonen S. Effect of 6‐Month Whole Body Vibration Training on Hip Density, Muscle Strength, and Postural Control in Postmenopausal Women: A Randomized Controlled Pilot Study. Journal of bone and mineral research. 2004;19(3):352-9.
94. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low‐level, high‐frequency mechanical signals enhance musculoskeletal development of young women with low BMD. Journal of Bone and Mineral Research. 2006;21(9):1464-74.
95. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. Journal of Bone and Mineral Research. 2004;19(3):360-9.
96. Lam T, Ng B, Cheung L, Lee K, Qin L, Cheng J. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporosis International. 2013;24(5):1623-36.
97. Slatkovska L, Alibhai SM, Beyene J, Hu H, Demaras A, Cheung AM. Effect of 12 Months of Whole-Body Vibration Therapy on Bone Density and Structure in Postmenopausal WomenA Randomized Trial. Annals of internal medicine. 2011;155(10):668-79.
98. Forwood M, Turner C. Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone. 1995;17(4):S197-S205.
99. Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. Journal of Orthopaedic Research. 1998;16(4):482-9.
100. Pollock RD, Woledge RC, Mills KR, Martin FC, Newham DJ. Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude. Clinical Biomechanics. 2010;25(8):840-6.
101. Wakeling JM, Nigg BM. Modification of soft tissue vibrations in the leg by muscular activity. Journal of Applied Physiology. 2001;90(2):412-20.
102. Sadeghian Dehkourdi E. Gelatin and hydroxyapatite composite scaffolds for bone tissue to study in an animal model approach Mechanobiology.Master's thesis - Engineering - Medicine.Department Engineering-Medicine, : Amirkabir University; 2010.
103. Ishihara A, Sasaki T, Debari K, Furuya R, Kawawa T, Ramamurthy NS, et al. Effects of ovariectomy on bone morphology in maxillae of mature rats. Journal of electron microscopy. 1999;48(4):465-9.
104. Christiansen BA, Silva MJ. The effect of varying magnitudes of whole-body vibration on several skeletal sites in mice. Annals of biomedical engineering. 2006;34(7):1149-56.
105. Rubin C. RR, Cullen D, Ryaby J, McCabe J, McLeod K,. prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res. 2004:Mar;19(3):343-51.
106. Umemura Y IT, Yamauchi T, Kurono M, Mashiko S,. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997:Sep;12(9):1480-5.
107. Rubin CT, Lanyon L. Regulation of bone formation by applied dynamic loads. The Journal of Bone & Joint Surgery. 1984;66(3):397-402.
108. Gala J, Piedra Cdl, Calero J. Short-and long-term effects of calcium and exercise on bone mineral density in ovariectomized rats. British Journal of Nutrition. 2001;86(04):521-7.
109. Bacabac RG, Smit TH, Van Loon JJ, Doulabi BZ, Helder M, Klein-Nulend J. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? The FASEB journal. 2006;20(7):858-64.
110. Chen B, Li Y, Xie D, Yang X. Low‐magnitude high‐frequency loading via whole body vibration enhances bone‐implant osseointegration in ovariectomized rats. Journal of Orthopaedic Research. 2012;30(5):733-9.
111. Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clinical orthopaedics and related research. 1998;355:S105-S15.
112. Crewther B, Cronin J, Keogh J. Gravitational forces and whole body vibration: implications for prescription of vibratory stimulation. Physical Therapy in Sport. 2004;5(1):37-43.
113. Roelants M, Delecluse C, Verschueren SM. Whole‐Body‐Vibration Training Increases Knee‐Extension Strength and Speed of Movement in Older Women. Journal of the American Geriatrics Society. 2004;52(6):901-8.
114. Bosco C, Colli R, Introini E, Cardinale M, Tsarpela O, Madella A, et al. Adaptive respsonses of human skeletal muscle to vibration exposure. CLINICAL PHYSIOLOGY-OXFORD-. 1999;19:183-7.
115. Martin BJ, Park H-S. Analysis of the tonic vibration reflex: influence of vibration variables on motor unit synchronization and fatigue. European journal of applied physiology and occupational physiology. 1997;75(6):504-11.
116. Jordan MJ, Norris SR, Smith DJ, Herzog W. Vibration training: an overview of the area, training consequences, and future considerations. The Journal of Strength & Conditioning Research. 2005;19(2):459-66.
117. Roelants M, Verschueren SM, Delecluse C, Levin O, Stijnen V. Whole-Body-Vibration--Induced Increase in Leg Muscle Activity During Different Squat Exercises. The Journal of Strength & Conditioning Research. 2006;20(1):124-9.
118. Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH. Variation in neuromuscular responses during acute whole-body vibration exercise. Medicine and science in sports and exercise. 2007;39(9):1642.
119. Abnosi M, Dehdehi L. Study of Morphology and Biochemistry of Rat Bone Marrow Mesenchymal Stem Cell Before and After Osteogenic Diffferentiation: A Comparative Study J of Cell & Tissue. 2012;3(2):103-11.
120. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proceedings of the National Academy of Sciences. 2002;99(14):9445-9.
121. Verschueren SM, Bogaerts A, Delecluse C, Claessens AL, Haentjens P, Vanderschueren D, et al. The effects of whole‐body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: A 6‐month randomized, controlled trial. Journal of bone and mineral research. 2011;26(1):42-9.