فهرست:
چکیده. یک
نمایهی شکلها. پنج
نمایهی جدولها. نه
فصل یکم: آغاز سخن. 1
1-1- پیشگفتار 1
1-2- الگوهای رشد ترک.. 2
1-3- ترک در مادهی مرکب.. 2
1-4- ساماندهی پایاننامه. 3
فصل دوم: الگوهای رشد ترک.. 6
2-1- پیشگفتار 6
2-2- الگوی کشسان خطی. 6
2-3- الگوی ترک چسبنده 7
2-4- الگوی رفتاری خرابی. 8
فصل سوم: شکست مادهی مرکب.. 9
3-1- پیشگفتار 9
3-2- مادهی مرکب.. 10
3-3- رفتار مکانیکی مادهی مرکب.. 10
3-4- وابستگی تنش و کرنش ماده 10
3-5- شکست در مادهی مرکب.. 16
3-6- شکلگیری ترک میان لایهای. 18
3-6-1- جدایی لایههای مادهی مرکب.. 20
3-6-2- تنشهای لبهی آزاد 20
3-6-3- ضربه. 21
3-7- رشد ترکهای میان لایهای. 21
فصل چهارم: رشد ترک در مادهی مرکب.. 23
4-1- پیشگفتار 23
4-2- معیار رشد ترک در مادهی مرکب.. 23
4-3- یافتن مقدار رهایی کارمایهی کرنشی. 24
4-3-1- نگرهی تیر 25
4-3-2- روش مساحت.. 27
4-3-3- راهکار گسترش مجازی ترک.. 28
4-3-4- فن تابع اولیهی مستقل از مسیر .. 29
4-3-5- روش بسته شدن مجازی ترک.. 32
فصل پنجم: جزء تماس چسبنده 35
5-1- پیشگفتار 35
5-2- جزء چسبنده 35
5-3- رابطهسازی الگوی ترک چسبنده 38
5-3-1- رابطهسازی الگوی چسبندهی دو خطی. 40
5-4- رابطهسازی تابع چسبنده 42
5-4-1- بررسی نمودار تنش- بازشدگی. 42
5-4-2- رابطهسازی تابع کشسان. 44
5-4-3- تابع کشسان خطی. 45
5-4-4- تابع کشسان سهمی درجه دو 46
5-4-5- تابع کشسان توانی. 46
5-4-6- تابع کشسان لگاریتمی. 47
5-4-7- مقایسهی تابعهای کشسان پیشنهادی. 47
5-5- روش جزءهای محدود ناحیهی چسبنده 49
فصل ششم: آزمایشهای شکست میان لایهای. 51
6-1- پیشگفتار 51
6-2- شیوهی بسته شدن مجازی ترک.. 51
6-3- شبیهسازی به روش جزء چسبنده 52
6-4- نمونههای عددی. 53
6-4-1- تیر طرهی دوتایی. 54
6-4-2- نمونهی خمشی یک بخشی. 62
6-4-3- نمونهی تیر خمشی ترکدار 66
فصل هفتم: پایان سخن. 76
1-1- پیش گفتار 76
7-2- گزیدهی پایاننامه. 76
7-2- نتیجهگیری. 77
7-3- پژوهشهای آیندگان. 77
دستمایهها 78
واژهنامهی فارسی به انگلیسی. 84
نامنامه 86
منبع:
الف1[- اعرابی، الیاس، رابطهسازی پوسته های چندلایهی هوشمند، پایاننامه کارشناسی ارشد ناپیوستهی سازه، دانشگاه فردوسی مشهد، 1388.
]ص1[- صادقی، یاسر، رابطهسازی صفحهی خمشی چندلایهی هوشمند، پایاننامه کارشناسی ارشد ناپیوستهی سازه، دانشگاه فردوسی مشهد، 1389
]ع1[- عین افشار، عاطفه، تحلیل خمش صفحات الاستیک چندلایهی مرکب دایرهای و مستطیل شکل با ویژگیهای هندسی متفاوت به روش رهایی پویا، پایاننامه کارشناسی ارشد ناپیوستهی سازه، دانشگاه فردوسی مشهد، 1385.
[A1]-Armero F, Oller S. A General Framework for Continuum Damage Models.I.Infinitesimal Plastic Damage Models in Stress Space. Int. J. Solids Structs. 37(2000), pp.7409-7436.
[A2]-Alfano G., Crisfield M.A., Finite element interface models for the delamination analysis
of laminated composites: mechanical and computational issues, Int. J. Numer. Methods
Engng. 77(2) (2001): 111-170.
[B1]-Barsoum R.S. On the use of isoparametric finite elements in linear fracture Mechanics. Int J Num Meth Engng. 10(1976) , No.7, pp.25-37.
[B2]-Barenblatt GI. The formation of equilibrium cracks during brittle fracture general ideas and hypotheses. J Appl Math Mech. 23(1999) , No.4,pp.622- 633.
[B3]-Bouchard P.O, Bay F, Chastel Y. Numerical modeling of crack propagation: automatic remeshing and comparison of different criteria. Comput. Methods Appl. Mech. Engrg. 192(2003) , pp.3887-3908.
[B4]-Bouchard P.O, Bay .F , Chastel .Y. Numerical modeling of crack propagation: automatic remeshing and comparison of different criteria.Comput. Methods Appl.Mech.Engrg.192(2003) ,No.8, pp.3887-3908.
[B5]-Bishop S.M., Dorey G.The Effect of Damage on the Tensile and Compressive Performance of Carbon Fiber Laminates . AGARAD conference proceedings,(1983) No.335.
[B6]-Bishop S.M. A Review of the Strength and Failure of High Performance Woven Carbon Fiber Reinforced Plastics.(1986)UK.
[B7]-Bishop S.M. The Mechanical Performance and Impact Behavior of Carbon-Fiber Reinforced. Composite Structures,13(1985),pp 295-318.
[B8]- Burlayenko V.N, Sadowski T. FE modeling of delamination growth in interlaminar fracture specimens. Budownictwo i Architektura 2 (2008) 95-109.
[C1]-Chan .SK, Tuba IS , Wilson WK. On the finite element method in linear fracture mechanics. Engng Fracture Mech. 45(1970),No.6,pp.967-973.
[C2]- Chandra .N, Li .H, Shet .C , Ghonem .H. Some issues in the application of cohesive zone models for metal–ceramic interfaces. Int J Solids Struct.39(2002) ,No.8,pp.2827-2855.
[C3]-Cui .W , Wisnom .M.R. A combined stress-based and fracture-mechanics- based model for predicting delamination in composites. Composites.24(2004) ,No.9,pp.74-467.
[C4]-Cordebois JP , Sidoroff F. Endomagement Anisotrope en Élasticité et Plasticité.Journal de Mécanique Théorique et Appliquée.(1982). pp.45-60.
[C5]-Camacho. G.T , Ortiz. M. Computational modeling of impact damage in brittle materials . Int J Solids Struct. 33(1996),No.6,pp.2899-938.
[D1]-Dugdale .D.S. Yielding of steel sheets containing slits. J Mech Phys Solids. 8(2006) ,No. 9,pp.100-114.
[E1]-Erdogan .F , Sih .G.C. On the extension of plates under plane loading and transverse shear . J Basic Engng, ASME. 85(1996) ,No.4 ,pp.519-527.
[E2]-Espinosa .H.D , Zavattieri .P.D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation". Mech Mater.35(2003),No.7,pp.333-364.
[F1]-Feih S. Development of a user element in ABAQUS for modelling of cohesive laws in composite structures. Risø-R Report. National Laboratory Roskilde Denmark. January 2005.
[G1]-Griffith .A.A.The phenomena of rupture and flow in solid. Phil. Trans. Roy. Soc. London. 1988.
[G2]-Geubelle P.H , Baylor J. Impact-induced delamination of laminated composites: a 2D simulation. Composites Part B Engineering. 29(1998) , No.5 , pp.589-602.
[G3]-Gurson AL. Continuum Theory of Ductile Rupture by Void Nucleation and Growth –PartI: Yield Criteria and Flow Rule for Porous Media. J. Engng. Mater.Tech. 99(2006),No.6,pp.2-15.
[H1]-Henshell. R.D , Shaw. K.G. Crack tip finite elements are unnecessary. Int J NumMeth Engng. 90(1975) , No.6,pp.495-507.
[H2]-Hussain M.A, Pu .S.L , Underwood .J.H. in . Fracture Analysis, ASTM STP 560 , ASTM, Philadelphia.(1994), pp.2-28.
[H3]-Hillerborg .A, Modéer .M , Petersson .P. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 6(2006) ,No.6,pp.773-782.
[H4]-Hirakovich C.T. Influence of Layer Thickness on the Strength of angle Ply-Laminates. J. of composite materials,16(1982), No. 3, pp. 216-227.
[H5]-Halpin J.C. Primer on Composite Materials. Technomic Company,1984.
[H6]-Hellen T.K. On the Method of Virtual Crack Extensions. Int .J for Num. Meth. In Eng. 9(1975), pp. 495-507.
[H7]-Harper P.W, Hallett S.R. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics. 75(2008), pp. 4774-4792.
[I1]-Inglis C.E. Stresses in a plate due to the presence of cracks and sharp corners. Proc. Inst. Naval Architects.1933.
[I2]-Irwin G.R. Fracture. Handbuch der Physik. 6(1965) ,pp.588.
[K1]-Kachanov .L.M. Time of the Rupture Process under Creep Condition. Izv. Akad. Nauk.SSSR, Otd. Tekhn. Nauk. 8(2004),pp.26-31.
[K2]-Krueger R. The Virtual Crack Closure Technique. History, Approach and Applications, ICASE, NASA/CR-2002-211628, April 2002.
[L1]-Lemaitre J. A Three-dimensional Ductile Damage Model Applied to Deep-drawing Forming Limits. ICM 4 Stockholm, 2(2004),No.8,pp.1047-1053.
[L2]-Lemaitre .J , Dufailly J. Damage Measurements. Engng. Fract. Mech. 28(2003) , No.8,pp.643-661.
[M1]-Manu C.Complete quadratic isoparametric finite elements in fracture mechanics analysis. Int J Num Meth Engng. 21(1985),No.8,pp.1547-1553.
[N1]- Nikishkov .G.P. , Atluri S.N. Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack, by the 'equivalent domain integral method. Int J Num Meth Engng, 24(1989),No.5,pp.1801-1827.
[N2]-Needleman .A. A continuum model for void nucleation by inclusion debonding. J Appl Mech. 54(2004),No.6,pp.525-531.
[N3]-Needleman. A. An analysis of tensile decohesion along an interface. Journal of the Mechanics and Physics of Solids. 38(2004),pp.289-324.
[N4]-Needleman. A. An analysis of decohesion along an imperfect interface. International Journal of Fracture. 42(2005),pp.21-40.
[O1]-Ochoa O, Reddy J.N. Finite element analysis of composite laminates. Kluwer academic publishers, 1992.
[O2]-O’Brien T.K, ASTM STP 775. (1982), PP.140-167.
[P1]-Parks D.M. Stiffness derivative finite element technique for determination of crack- tip stress intensity factors. Int J Fracture. 10(1984),No.8,pp.487-502.
[P2]-Phongthanapanich .S , Dechaumphai .P. Adaptive Delaunay triangulation with object oriented programming for crack propagation analysis . Finite Elem Anal Des. 40(2004),No.6,pp.1753-1771.
[P3]-Pandya .K.C , Williams .J.G. Cohesive zone modelling of crack growth in polymers. Part 2–numerical simulation of crack growth. Plast Rubber Compos.29(2000),No.9,pp.447-452.
[P4]-Pandolfi A, Guduru P. R, Ortiz M, Rosakis. Three dimensional cohesive- element analysis and experiments of dynamic fracture in C300 steel. Int.J. Solids and Structures, 33(2004),pp. 3733-3760.
[P5]-Paris A.J, Gunderson J.D. DCB TEST FOR THE INTERLAMINAR FRACTURE TOUGHNESS OF COMPOSITES. ASTM D5528 - 01e3, 2007.
[R1]-Rice. J. A path independent integral and the approximate analysis of atrain concentrations by notches and cracks. J Applied Mech, 35(1998),No.6,pp.379- 386.
[R2]-Rabotnov YN. On the Equations of State for Creep. Page 307 of : Progress in Applied Mechanics, Prager Anniversary Volume. New York: Macmillan. 1993.
[R3]-Ruismer J.R, J.M.Whitney. Failure of Composite Laminates Containing Stress Concentrations. ASTM STP 593, Americam Society for Testing and Materials. (1975), pp. 117-142.
[R4]-Rice J.R, Wang J.S. Embrittlement of interfaces by solute segregation. Material Science and Engineering.107(2006) , pp.23-40.
[R5]-Rice JR. A Path-Independent Integral and the Apprpximate Analysis of Strain Concentration by Notches and Cracks. J. of Appl. Mech. 35(1968) , pp. 376-386.
[R6]-Rybiki, M.F Kanninen. A Finite Element Calculation of Stress Intensity Factor by Modified Crack Closure Integral. Eng.Fract.Mech. 9(1977) ,pp.931-938.
[R7]-Raju I.S. Simple Formulas for Strain-energy Release Rates with Higher Order and Singular Finite elements. NASA-CR 178186, Dec.1986.
[S1]-Shih CF, Delorenzi .H.G , German. M.D. Crack extension modeling with singular quadratic isoparametric elements. Int J Fracture. 1(1986),No.5,pp. 647- 651.
[S2]-Simo J.C, Ju J.W. Strain- and Stress-based Continuum Damage Models–I Formulation and II. Computational Aspects". Int. J. Solids Structs. 23(2002) ,pp.821-869.
[S3]-Shivakumar P.W., Newman J.R. A Virtual Crack Closure Technique for Calculating Stress Intensity Factors For Cracked Three Dimensional Bodies. Int. J. of Fract. 36(1988) ,pp.43-50.
[T1]-Tvergaard V. Effect of fibre debonding in a whisker-reinforced metal . Material Science and Engineering. 2(1998),No.125,pp.203-213.
[T2]-Tvergaard .V, Hutchinson .J.W. The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. Journal of the Mechanics and Physics of Solids. 40(2002),No.6,pp.1377-1397.
[T3]-Thampson, T., Warzi, N., Weatherhill, C. Numerical Grid Generation, Fundation & Application,North Holland. 40(2004),No.6,pp.1753-1771.
[U1]-Unger J.F, Eckardt .S, Konke .C, Modeling of cohesive crack growth in concrete structures with the extended finite element method. Comp Methods Appl Mech Eng. 196(2007), pp.4087-4100.
[V1]-vanden. Bosch M.J, Schreurs .P.J.G, Geers .M.G.D." An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode Decohesion". Engng Fract Mech. 73(2006) ,No.9,pp.1220-1234.
[W1]-Wang J.L. Cohesive-bridging zone model of FRP-concrete interface debonding. Eng Fract Mech., 74(2007), pp. 2643-2658.
[W2]- Williams G.J. Fracture Mechanics of Anisotropic Materials. Chapter 1, Application of Fracture Mechanics to Composite Materials. Elsevier Science Publishers, B.V. 1989.
[W3]- Williams G.J. On the Calculation of Energy Release Rates for Cracked Laminates. Int. J. of Fract. 36(1988), pp. 101-119.
[X1]-Xu, XP, Needleman .A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering. 2(2003),No.6,pp.111-132.
[Y1]-Yang Q, Cox B. Cohesive models for damage evolution in laminated composites. International Journal of Fracture,Vol. 133(2005), pp. 107-137
[Z1]-Zhang ZY, Paulino GH. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int J Plast.21(2005) , No.6 ,pp. 1195-1254.