فهرست:
فصل اول: مقدمه
1-1- انواع کوله پلها، مکانیابی و ساخت... 2
1-1-1- انواع کوله پلها 2
1-1-2- مکانیابی کوله پلها 3
1-1-3- ابعاد کوله و نحوه ساخت... 4
1-2- میدان جریان.. 4
1-3- پروسه آبشستگی.. 6
1-3-1- آبشستگی کلی.. 6
1-3-2- آبشستگی کوله پل.. 7
1-4- معرفی تحقیق.. 8
فصل دوم: مروری بر تحقیقات پیشین و تئوری تحقیق
2-1- مقدمه. 11
2-2- طبقه بندی آبشستگی موضعی کوله پلها 12
2-3- میدان جریان و تنش برشی بستر در محل کوله پل.. 13
2-4- پارامترهای تاثیرگذار بر آبشستگی کوله پلها 16
2-4-1- طبقه بندی پارامترها 16
عنوان صفحه
2-4-2- آنالیز ابعادی.. 17
2-5- تاثیر پارامترهای مختلف بر عمق آبشستگی.. 18
2-5-1- سرعت جریان عبوری.. 18
2-5-2- عمق جریان عبوری.. 20
2-5-3- طول کوله، نسبت تنگ شدگی و نسبت دهانه. 21
2-5-4- اندازه و دانهبندی رسوبات.. 22
2-5-5- شکل کوله. 25
2-5-6- جهت قرارگیری کوله نسبت به جریان عبوری.. 26
2-5-7- هندسه آبراهه. 27
2-5-8- تغییرات زمانی آبشستگی.. 28
2-6- تخمین عمق آبشستگی.. 31
2-6-1- رویکرد رژیم جریان.. 31
2-6-2- رویکرد تجربی.. 32
2-6-3- رویکرد تحلیلی یا شبه تجربی.. 37
2-7- مطالعات عددی آبشستگی اطراف کوله پلها 38
2-8- روشهای کنترل آب شستگی.. 40
2-9- نتیجهگیری.. 42
فصل سوم: ضوابط طراحی ژئوبگها
3-1- مقدمه. 44
3-2- ضوابط کلی پایداری.. 44
3-2-1- پایداری در برابر بار موج.. 44
3-2-2- پایداری بار جریان.. 48
عنوان صفحه
3-3 -ضوابط پایداری ژئوبگها 52
3-3-1- بحث در مورد دانسیته نسبی.. 52
3-3-2- محافظت شیب... 52
3-3-3- پایداری المانهای تاج.. 56
3-4- ضابطه طراحی بر اساس بار جریان.. 57
3-5- پایداری ژئوبگها از منظر مکانیک خاک... 57
فصل چهارم: معرفی نرمافزار FLOW-3D
4-1- مقدمه. 59
4-2- مدل هیدرودینامیک... 59
4-3- مدلسازی رسوب.. 62
4-4- مدل آشفتگی.. 66
فصل پنجم: نتایج شبیهسازی عددی
5-1- مقدمه. 69
5-2- کالیبراسیون مدل و آنالیز حساسیت مشبندی.. 70
5-2-1- مشخصات مدل و نحوه شبکهبندی.. 70
5-2-2- نتایج شبیهسازی.. 73
5-2-2-1- نتایج شبیهسازی جریان.. 73
5-2-2-2- نتایج شبیهسازی رسوب.. 75
5-3- بررسی تاثیر ژئومت بر کنترل آبشستگی کوله با دیواره قائم.. 81
5-4- بررسی تاثیر ژئوبگ و ژئومت بر کنترل آبشستگی اطراف کوله بالهای.. 83
5-4-1- مشخصات مدل کوله بالهای.. 83
عنوان صفحه
5-4-2- نتایج شبیهسازی جریان و فرسایش اطراف کوله بالهای بدون
وجود لایه محافظ.. 85
5-4-3- نتایج شبیهسازی جریان و فرسایش اطراف کوله بالهای
محافظت شده با ژئوبگ... 87
5-4-4- شبیهسازی جریان و فرسایش اطراف کوله بالهای محافظت شده
به وسیله ژئومت... 91
5-5- تاثیر ضخامت و عرض لایه ژئومت بر کنترل آبشستگی اطراف کوله بالهای.. 93
5-6- بررسی اثر عمق جریان بر آبشستگی اطراف کوله بالهای بدون لایه
محافظ و کارایی کوله حفاظت شده با لایه ژئومت... 98
5-7- مطالعه تاثیر سرعت جریان بر آبشستگی اطراف کوله بالهای
بدون لایه محافظ و کارایی کوله حفاظت شده با لایه ژئومت... 100
5-8- بررسی تاثیر اندازه ذرات رسوبی و پارامتر شیلدز بر آبشستگی اطراف کوله بالهای بدون لایه محافظ و کارایی کوله حفاظت شده با لایه ژئومت و لایه ژئوبگ... 102
فصل ششم: نتایج تحقیق و پیشنهادها
6-1- نتایج تحقیق.. 105
6-2- پیشنهادها برای کارهای آینده. 106
فهرست منابع.. 107
منبع:
Ahilan RV, Sleath JFA, 1987, Sediment transport in oscillatory flow over flat bed. J Hydraul Eng; 113(3):308–22
Ahmad M, 1953, Experiments on design and behavior of spur-dikes. Proc. Int. Hydraul. Convention: 145–159
Ahmed F, Rajaratnam N, 2000, Observations on flow around bridge abutment. J. Eng. Mech., Am. Soc. Civ. Eng. 126: 51–59
Anderson A. G, 1963, Discussion of ‘Sediment transportation mechanics: erosion of sediment’ by Task Force on Preparation of Sedimentation Manual. J. Hydraul. Div., Am. Soc. Civ. Eng. 89: 237–248
Baker R. E, 1986, Local scour at bridge piers in non-uniform sediment. Rep. No. 402, School of Engineering, University of Auckland, Auckland, New Zealand
Ballio F, Orsi E, 2000, Time evaluation of scour around bridge abutments. Water Eng. Res. 2: 243–259
Bakker WT, 1974, Sand concentration in an oscillatory flow. In: Proceedings of the 14th conference coastal engineering ASCE, Copenhage: 1129–48.
Barbhuiya A. K, 2003, Clear-water scour at abutments. Ph D thesis, Department of Civil Engineering, Indian Institute of Technology, Kharagpur
Barbhuiya A. K, Dey S, 2004a, Measurements of turbulent flow field at a vertical semicircular cylinder attached to the sidewall of a rectangular channel. Flow Meas. Instrum. 15: 87–96
Barbhuiya A. K, Dey S, 2004b, Turbulent flow measurement by the ADV in the vicinity of a rectangular cross-section cylinder placed at a channel sidewall. Flow Meas. Instrum. 15: 221–237
Barbhuiya A. K, Dey S, 2004c, Local scour at abutments: A review. Sadhana 29: 449–476
Barkdoll B. D., Ettema R., Melville B. W., 2007, Countermeasures to protect bridge abutments from scour. National Cooperative Highway Research Program (NCHRP) Rep. No. 587, Transportation Research Board, Washington, D.C
Biglari B, Sturm T. W, 1998, Numerical modeling of flow around bridge abutments in compoundchannel. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 156–164
Blench T, 1957, Regime behavior of canals and rivers (London: Butterworth Scientific)
Bradford S. F, 2000, Numerical simulation of surf zone dynamics. J. Waterw. Port. C. - ASCE, 126(1):1–13
Breusers H.N.C, 1963, Discussion of ’Sediment transportation mechanics: erosion of sediment’ by Task Force on Preparation of Sedimentation Manual. J. Hydraul. Div., Am. Soc. Civ. Eng. 89: 277–281
Breusers H.N.C, 1967, Time scale of two-dimensional local scour. Proc. 12th Cong. IAHR 3: 275–282
Brethour J. M, 2001, Transient 3-d model for lifting, transporting and depositing solid material. In Proceedings of the 2001 International Symposium on Environmental Hydraulics, Tempe, Arizona
Cardoso A. H, Bettess R, 1999, Effects of time and channel geometry on scour at bridge abutments. J. Hydraul. Eng., Am. Soc. Civ. Eng. 125: 388–399
Carstens M. R, 1966, Similarity laws for localized scour. J. Hydraul. Div., Am. Soc. Civ. Eng. 92: 13–36 CBI 1949 Pub. No. 49, Central Board of Irrigation, New Delhi CBI, 1949, Pub
Chabert J, Engeldinger P, 1956, Etude des affouillements autour des piles de ponts. Serie A, Laboratoire National d’Hydraulique. Chatou, France (in French)
Chang WY, Lai JS, Yen CL, 1999, Simulation of scour depth evolution at pier nose. In: Proceedings of the 1999 international water resources engineering conference, August, Session BS-05, Water Resources Publications, LLC, Highlands Ranch, CO.
Chiew Y.M, 1984, Local scour at bridge piers. Ph D thesis, University of Auckland, Auckland, New Zealand
Chiew Y.-M., Lim S.-Y, 2003, Protection of bridge piers using a sacrificial sill. Proc. Inst. Civ. Eng., Waters. Maritime Energ., 156(1): 53–62
Chopakatla S. C, 2003, A CFD Model for Wave Transformations and breaking in the Surf Zone. MS thesis, The Ohio State University
Coleman S. E, Lauchlan C. S, Melville B. W, 2003, Clear-water scour development at bridge abutments. J. Hydraul. Res. 41: 521–531
Cunha L. V, 1975, Time evolution of local scour. Proc. 16th Conf. Int. Assoc. Hydraulic Research (Delft: IAHR) pp 285–299
Dargahi B, 1990, Controlling mechanism of local scouring. J. Hydraul. Eng., Am. Soc. Civ. Eng. 116: 1197–1214
Dey S, Bose S. K, Sastry G.L.N, 1995, Clear-water scour at circular piers: a model. J. Hydraul. Eng., Am. Soc. Civ. Eng. 121: 869–876
Dey S, 1995, Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Sadhana 20: 771–785
Dey S, Barbhuiya A. K, 2004a, Clear-water scour at abutments. Water Management, J. Proc. Inst. Civ. Eng. (London) 151: 77–97
Dey S, Barbhuiya A. K, 2004b, Clear-water scour at abutments in thinly armored beds. J. Hydraul. Eng., Am. Soc. Civ. Eng. 130: 622–634
Dongol D.M. S, 1994, Local scour at bridge abutments. Rep. No. 544, School of Engineering, University of Auckland, Auckland, New Zealand
Ettema R, 1980, Scour at bridge piers. Rep. No. 216, School of Engineering, University of Auckland, Auckland, New Zealand
Ettema R, Nakato T, Muste M, 2009, Scour at Bridge Abutments. Web Report for Project 24-20, National Cooperative Highway Research Program, Washington, DC, United States
Flow Science, Inc. 2002, FLOW-3D User’s Manual. Flow Science, Inc., 8.0 edition
Franzetti S, Larcan E, Mignosa P, 1982, Influence of test duration on the evaluation of ultimate scour around circular piers. Proc. Int. Conf. Hydraulics and Modelling of Civil Structures, Coventry, England, pp 381–396
Froehlich D. C, 1989, Local scour at bridge abutments. Proc. Natl. Conf. Hydraulic Engineering (New Orleans, LA: Am. Soc. Civil Eng.) pp 13–18
Garde R. J, Subramanya K, Nambudripad K. D, 1961, Study of scour around spur-dikes. J. Hydraul. Div., Am. Soc. Civ. Eng. 87: 23–37
Garde R. J, Subramanya K, Nambudripad K. D, 1963, Closure of ‘Study of scour around spur-dikes’. J. Hydraul. Div., Am. Soc. Civ. Eng. 88: 167–175
Gill M. A, 1972, Erosion of sand beds around spur-dikes. J. Hydraul. Div., Am. Soc. Civ. Eng. 98:1587–1602
Graf W. H, Istiarto I, 2002, Flow pattern in the scour hole around a cylinder. J.Hydraul. Res. 40: 13–20 Hjorth P 1975 Studies on the nature of local scour. Bull. Series A, No. 46, Department of Water Resources Engineering, University of Lund, Sweden
Hagatun K, Eidsvik KJ, 1986, Oscillatory turbulent boundary layers with suspended sediments. J Geophys Res; 91(C11):13,045–55
Heibaum, M.H, 2000, Geosynthetic containers— a new field of application with nearly no limits. Proceedings of the seventh international conference on geosynthetics. 7 ICG-NICE, France, vol. 3, pp. 1013–1016
Hjorth P, 1975, Studies on the nature of local scour. Bull. Series A, No. 46, Department of Water Resources Engineering, University of Lund, Sweden
Huang W, Yang Q, Hong X, 2009, CFD modeling of scale effects on turbulence flow and scour around bridge piers. J. Computers & Fluids 38: 1050-1058
Kandasamy J.K, 1985, Local scour at skewed abutments. Rep. No. 375, School of Engineering, University of Auckland, Auckland, New Zealand
Kandasamy J. K, 1989, Abutment scour. Rep. No. 458, School of Engineering, University of Auckland, Auckland, New Zealand
Kandasamy J. K, Melville B. W, 1998, Maximum local scour depth at bridge piers and abutments. J. Hydraul. Res. 36: 183–197
Kayaturk S.Y. 2005, Scour and scour protection at bridge abutments. M.S thesis, The Middle East technical university
Kohli A, Hager W. H, 2001, Building scour in floodplains. Water Maritime Eng., Proc. Inst. Civ. Eng. (London) 148: 61–80
Koken M., Gogus M., 2010, Effect of abutment length on the bed shear stress and the horseshoe vortex system. International Conference on Fluvial Hydraulics, Braunschweig, Germany
Korkut R., J.Martinez E., Morales R., Ettema R., Barkdoll B., 2007, Geobag Performance as Scour Countermeasure for Bridge Abutments. 10.1061 (ASCE) 0733-9429, 133: 431-439
Kouchakzadeh, S., 1996, The local scouring phenomenon at bridge abutments terminating in the floodplain zone. PhD thesis. Ottawa, Canada, Dept. of Civil Engineering, University of Ottawa
Kothyari U. C, Garde R. J, Ranga Raju K. G, 1992a, Temporal variation of scour around circular bridge piers. J. Hydraul. Eng., Am. Soc. Civ. Eng. 118: 1091–1106
Kothyari U. C, Garde R. J, Ranga Raju K. G, 1992b, Live-bed scour around cylindrical bridge piers. J. Hydraul. Res. 30: 701–715
Kothyari U. C, Ranga Raju K. G, 2001, Scour around spur-dikes and bridge abutments. J. Hydraul. Res. 39: 367–374
Kumar V., Ranga Raju K. G., Vittal, N, 1999, Reduction of local scour around bridge piers using slots and collars. J. Hydraul. Eng., 125(12): 1302–1305
Kwan T. F., 1984 Study of abutment scour. Rep. No. 328, School of Engineering, University of Auckland, Auckland, New Zealand
Kwan T. F., 1988, A study of abutment scour. Rep. No. 451, School of Engineering, University of Auckland, Auckland, New Zealand
Kwan T. F., Melville B. W., 1994, Local scour and flow measurements at bridge abutments. J. Hydraul. Res. 32: 661–67
Lagasse P. F., Clopper P. E., Zevenbergen L. W., Girard L. G., 2007, Countermeasures to protect bridge piers from scour. National Cooperative Highway Research Program (NCHRP) Rep. No. 593, Transportation Research Board, Washington, D.C
Lauchlan C. S., Melville, B. W., 2001, Riprap protection at bridge piers. J. Hydraul. Eng., 127(5): 412–418
Laursen E. M., 1952, Observations on the nature of scour. Proc. 5th Hydraul. Conf.: 179–197
Laursen E. M., 1958, Scour at bridge crossings. Bull. No. 8, Iowa Highways Research Board, Ames, Iowa
Laursen E. M., 1960, Scour at bridge crossings. J. Hydraul. Div., Am. Soc. Civ. Eng. 86: 39–54
Laursen E. M., 1963, An analysis of relief bridge scour. J. Hydraul. Div., Am. Soc. Civ. Eng. 89: 93–118
Laursen E. M., Toch A., 1956, Scour around bridge piers and abutments. Bull. No. 4, Iowa Highways Research Board, Ames, Iowa
Li H., Barkdoll B. D., Kuhnle R., Alonso C, 2006, Parallel walls as an abutment scour countermeasure. J. Hydraul. Eng., 132(5): 510–520
Lim S. Y, 1997, Equilibrium clear-water scour around an abutment. J. Hydraul. Eng., Am. Soc. Civ. Eng. 123: 237–243
Lim S. Y, Cheng N. S, 1998, Prediction of live-bed scour at bridge abutments. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 635–638
Liu H.K, Chang F.M, Skinner M.M, 1961, Effect of bridge construction on scour and backwater. CER60 HKL 22, Colorado State University, Civil Engineering Section, Fort Collins, Colorado
Macky G. H, 1990, Survey of roading expenditure due to scour. CR 90·09, Department of Scientific and Industrial Research, Hydrology Centre, Christchurch, New Zealand
Melville B. W, 1975, Local scour at bridge sites. Rep. No. 117, School of Engineering, University of Auckland, Auckland, New Zealand
Melville B. W, 1992, Local scour at bridge abutments. J. Hydraul. Eng., Am. Soc. Civ. Eng. 118: 615–631
Melville B. W, 1995, Bridge abutment scour in compound channels. J. Hydraul. Eng., Am. Soc. Civ. Eng. 121: 863–868
Melville B. W, 1997, Pier and abutment scour: integrated approach. J. Hydraul. Eng., Am. Soc. Civ. Eng. 123: 125–136
Melville B. W, Ettema R, 1993, Bridge abutment scour in compound channels. Proc. Natl. Conf. Hydraulic Engineering, Univ. of Iowa, Iowa City, Iowa, pp 767–772
Melville B. W, Sutherland A. J, 1988, Design method for local scour at bridge piers. J. Hydraul. Eng., Am. Soc. Civ. Eng. 114: 1210–1226
Molinas A, Kheireldin K, Wu B, 1998, Shear stress around vertical wall abutments. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 822–830
Morales R, Ettema R, 2011, Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels. Iowa University
Neill C. R, 1973, Guide to bridge hydraulics (Toronto: University of Toronto Press)
Nadaoka K, Yagi H, 1990, Single-phase fluid modeling of sheet-flow toward the development of numerical mobile bed. In: Proceedings of the 22th international conference coastal engineering ASCE: 2346–59
Odgaard A. J., Wang Y., 1987, Scour prevention at bridge piers. Proc., 1987 National Conf. on Hydraulic Engineering, New York, 523–527
Oliveto G, Hager W. H, 2002, Temporal evolution of clear-water pier and abutment scour. J. Hydraul. Eng., Am. Soc. Civ. Eng. 128: 811–820
Olsen NRB, Melaaen MC, 1993, Three-dimensional calculation of scour around cylinders. J Hydraul Eng. 119(9):1048–54
Pilarczyc K.W, 2000-a, Geosynthetics and Geosystems in Hydraulic and Coastal Engineering, A.A. Balkema, Rotterdam
Pilarczyc, K. W, 2000-b, Geomettresses in erosion control—An overview of design criteria. Filters and drainage in geotechnical and environmental engineering, Balkema, Rotterdam, The Netherlands, 331–338.
Rajaratnam N, Nwachukwu B. A, 1983, Flow near groin-like structures. J. Hydraul. Eng., Am. Soc. Civ. Eng. 109: 463–480
Raudkivi A. J, Ettema R, 1983, Clear-water scour at cylindrical piers. J. Hydraul. Eng., Am. Soc. Civ. Eng. 109: 338–350
Ribberink JS, Al-Salem AA, 1995, Sheet flow and suspension of sand in oscillatory boundary layers. Coastal Eng. 25:205–25
Richardson E. V, Davis S. R, 2001, Evaluating scour at bridges. HEC18 FHWA NHI 001, Federal Highway Administration, US Department of Transportation, Washington, DC.
Richardson E. V, Harrison L. J, Richardson J. R, Davies S. R, 1993, Evaluating scour at bridges. Publ. FHWA-IP-90-017, Federal Highway Administration, US Department of Transportation, Washing-ton, DC
Richardson JE, Pancheng VG, 1998, Three dimensional simulation of scour inducing flow at bridge piers. J Hydraul Eng ASCE: 124(5)
Richardson E. V, Richardson J. R, 1998, Discussion of ‘Pier and abutment scour: integrated approach’ by B W Melville. J. Hydraul. Eng., Am. Soc. Civ. Eng. 124: 771–772
Richardson E. V, Simons D. B, Lagasse P. F, 2001, River engineering for highway encroachments – highways in the river environment. HS6 FHWA NHI-01-004, Federal Highway Administration, US Department of Transportation, Washington, DC
Ramu K.L.V, 1964, Effect of sediment size on scour. Ph D thesis, University of Roorkee, Roorkee, India
Rouse H, 1965, Engineering hydraulics: sediment transportation (New York: John Wiley and Sons)
Santos J.S.D, Cardoso A. H, 2001, Time evolution of local scour at obstacles protruding from channel side walls. Int. J. Sediment Res. 16: 460–472
Sastry C. L. N, 1962, Effect of spur-dike inclination on scour characteristics. MS thesis, University of Roorkee, Roorkee
Smith H. D, 2004, Modeling the flow and scour around an immovable cylandir, MS thesis, The Ohio State University
Stansby P. K, Zhou J. G, 1998, Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. Int. J. Numer. Meth. Fl., 28(3):541–563
Sturm T. W, Janjua N. S, 1994, Clear-water scour around abutments in floodplains. J. Hydraul. Eng., Am. Soc. Civ. Eng. 120: 956–972
Tey C. B, 1984, Local scour at bridge abutments. Rep. No. 329, School of Engineering, University of Auckland, Auckland, New Zealand
Tseng M, Yen CL, Song CCS, 2000, Computation of three-dimensional flow around square and circular piers. Int J Numer Meth Fluids; 34: 207–27
Wang SSY, Jia Y, 1999, Computational simulations of local scour at bridge crossings - capabilities and limitations. In: Proceedings of the 1999 international water resources engineering conference, August, Session BS-06, Water Resources Publications, LLC, Highlands Ranch, CO.
Whitehouse R.J.S, 1997, Scour at marine structures: a manual for engineers and scientists. Res. Rep. SR417, HR Wallingford Limited, Wallingford, UK
Wilcox D. C, 2000, Turbulence Modeling for CFD. DCW Industries, second edition
Wong W. H, 1982, Scour at bridge abutments. Rep. No. 275, School of Engineering, University of Auckland, New Zealand
Zaghloul N. A, McCorquodale J. A, 1975, A stable numerical model for local scour. J. Hydraul. Res.13: 425–444
Zarrati A. R., Nazahira M., Mashahir M. B, 2006, Reduction of local scour in the vicinity of bridge pier groups using collars and riprap. J. Hydraul. Eng., 132(2): 154-162