فهرست:
فصل 1 مقدمه.. 2
1-1 پیشگفتار. 2
1-2 ضرورتها، انگیزهها و ویژگیهای تحقیق.. 4
1-3 اهداف و سؤالات تحقیق.. 5
1-4 روش تحقیق.. 6
1-5 معرفی اختصاری سایر فصول.. 7
فصل 2 مروری بر تحقیقات پیشین.. 10
2-1 مقدمه. 10
2-2 مروری بر روشهای طبقهبندی پوشش اراضی.. 10
2-2-1 فنهای طبقهبندی شیگرا 11
2-2-2 فنهای طبقهبندی نظارتنشده پیکسل-مبنا 12
2-2-3 فنهای طبقهبندی نظارتشده پیکسل-مبنا 12
2-3 مروری بر روشهای طبقهبندی جدید در سنجش از دور. 13
2-3-1 طبقهبندی با شبکههای عصبی مصنوعی.. 14
2-3-2 طبقهبندی با درختان تصمیم. 15
2-3-3 طبقهبندی با روشهای مبتنی بر ماشین بردار پشتیبان. 15
2-3-4 فنهای طبقهبندی دانش-پایه. 17
2-3-5 طبقهبندی با الگوریتمهای ترکیبی.. 18
2-4 روشهای انتخاب و کاهش فضای ویژگی.. 21
2-5 خلاصه فصل.. 22
فصل 3 مفاهیم و روشها. 25
3-1 مقدمه. 25
3-2 مفاهیم پایه. 25
3-3 الگوریتمهای یادگیری متداول.. 27
3-3-1 آنالیز جداسازی خطی.. 27
3-3-2 درختهای تصمیم. 28
3-3-3 شبکههای عصبی.. 31
3-3-4 طبقهبندیکننده بیز ساده 33
3-3-5 روشهای مبتنی بر ماشینهای بردار پشتیبان و کرنل.. 34
3-4 روشهای دسته جمعی.. 39
3-5 تقویت... 41
3-6 روش Bagging. 42
3-6-1 دو الگوی گروهی.. 42
3-6-2 الگوریتم Bagging. 43
3-6-3 جنگل تصادفی.. 47
3-6-4 انتخاب ویژگی با کمک شاخص تعیین اهمیت ویژگی RF. 51
3-7 قطعهبندی تصویر. 53
3-7-1 قطعهبندی به روش چند رزولوشنه. 54
3-7-2 روش برآورد مقیاس مناسب برای قطعهبندی تصویر. 58
3-8 برآورد دقت طبقهبندی.. 59
3-8-1 ماتریس ابهام. 60
3-9 خلاصه. 62
فصل 4 روش تحقیق و نتایج.. 64
4-1 مقدمه. 64
4-2 دادهها و منطقه مورد مطالعه. 64
4-3 روش پیشنهادی تحقیق.. 66
4-3-1 انتخاب باند با کمک شاخص اهمیت ویژگی RF. 69
4-3-2 قطعهبندی تصویر ابرطیفی.. 70
4-3-3 گروههای ویژگی.. 71
4-3-4 طبقهبندی.. 72
4-4 ارزیابی.. 74
4-4-1 نتایج ارزیابی دقت کلی و ضریب کاپا 74
4-4-2 ارزیابی زمانی روشهای طبقهبندی.. 79
4-4-3 نتایج طبقهبندی به تفکیک کلاسها 80
4-4-4 ارزیابی بصری.. 84
4-5 جمعبندی مطالب فصل.. 88
فصل 5 نتیجهگیری و پیشنهادها. 91
5-1 مقدمه. 91
5-2 خلاصه تحقیق.. 91
5-3 دستاوردهای تحقیق.. 92
5-4 پیشنهادها 95
منابع 97
منبع:
Alexander C, Tansey K, Kaduk J, Holland D, and Tate NJ (2011) An approach to classification of airborne laser scanning point cloud data in an urban environment. International Journal of Remote Sensing 32, 9151-69.
Baatz M and Schäpe A (2000) Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. Angewandte geographische informationsverarbeitung 12, 12-23.
Ball GH and Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification. In (ed.), Vol. pp. DTIC Document,
Bartels M and Wei H (2006) Maximum Likelihood Classification of LIDAR Data incorporating multiple co-registered Bands. In Proceedings of 4th International Workshop on Pattern Recognition in Remote Sensing/18th International Conference on Pattern Recognition. (ed.), Vol. 20, pp. 17-20, Citeseer,
Bekkari A, Idbraim S, Elhassouny A, Danielle Ducrot DM, Yassa ME, and Ducrot D (2012) Spectral and Spatial Classification of High Resolution Urban Satellites Images using Haralick features and SVM with SAM and EMD distance Metrics. International Journal of Computer Applications 46,
Benz UC, Hofmann P, Willhauck G, Lingenfelder I, and Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing 58, 239-58.
Bilgin G, Erturk S, and Yildirim T (2011) Segmentation of hyperspectral images via subtractive clustering and cluster validation using one-class support vector machines. Geoscience and Remote Sensing, IEEE Transactions on 49, 2936-44.
Blaschke T (2010) Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing 65, 2-16.
Bonissone P, Cadenas J, Garrido M, and Dıaz-Valladares R (2008a) A fuzzy random forest: Fundamental for design and construction. In Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’08). (ed.), Vol. pp. 1231-8,
Bonissone PP, Cadenas JM, Garrido M, and Diaz-Valladares RA (2008b) Combination methods in a fuzzy random forest. In Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on. (ed.), Vol. pp. 1794-9, IEEE,
Bosch A, Zisserman A, and Muoz X (2007) Image classification using random forests and ferns. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. (ed.), Vol. pp. 1-8, IEEE,
Boulesteix AL, Janitza S, Kruppa J, and König IR (2012) Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 493-507.
Breiman L (1996) Bagging predictors. Machine learning 24, 123-40.
Breiman L (2003) Manual for Setting Up, Using, and Understanding Random Forest V4.0. In (ed.), Vol. pp.
Breiman L (2001) Random forests. Machine learning 45, 5-32.
Bruzzone L, Marconcini M, Wegmuller U, and Wiesmann A (2004) An advanced system for the automatic classification of multitemporal SAR images. Geoscience and Remote Sensing, IEEE Transactions on 42, 1321-34.
Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery 2, 121-67.
Camps-Valls G and Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. Geoscience and Remote Sensing, IEEE Transactions on 43, 1351-62.
Chan JC-W and Canters F (2007) Ensemble classifiers for hyperspectral classification. In Proceedings 5th EARSeL Workshop on Imaging Spectroscopy. Bruges. (ed.), Vol. 1, pp.
Chapelle O and Keerthi SS (2008) Multi-class feature selection with support vector machines. In Proceedings of the American statistical association. (ed.), Vol. pp.
Chehata N, Guo L, and Mallet C (2009) Airborne lidar feature selection for urban classification using random forests. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39, 207-12.
Chen Y-W and Lin C-J (2006) Combining SVMs with various feature selection strategies. In Feature Extraction. Vol. pp. 315-24. Springer,
Cohen J (1960) A coefficient of agreement for nominal scales. Educational and psychological measurement 20, 37-46.
Cortes C and Vapnik V (1995) Support-vector networks. Machine learning 20, 273-97.
Crawford MM, Ham J, Chen Y, and Ghosh J (2004) Random forests of binary hierarchical classifiers for analysis of hyperspectral data. In Advances in Techniques for Analysis of Remotely Sensed Data, 2003 IEEE Workshop on. (ed.), Vol. pp. 337-45, IEEE,
Criminisi A, Shotton J, and Konukoglu E (2011) Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision 7,
Cristianini N and Shawe-Taylor J (2000) In An introduction to support vector machines and other kernel-based learning methods. Vol. pp. Cambridge university press,
Definiens A (2007) Definiens developer 7 reference book. Definiens AG, München 21-4.
DeFries R and Chan JC-W (2000) Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sensing of Environment 74, 503-15.
Del Frate F, Pacifici F, Schiavon G, and Solimini C (2007) Use of neural networks for automatic classification from high-resolution images. Geoscience and Remote Sensing, IEEE Transactions on 45, 800-9.
Dixon B and Candade N (2008) Multispectral landuse classification using neural networks and support vector machines: one or the other, or both? International Journal of Remote Sensing 29, 1185-206.
Drǎguţ L, Tiede D, and Levick SR (2010) ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science 24, 859-71.
Du P, Xia J, Chanussot J, and He X (2012) Hyperspectral remote sensing image classification based on the integration of support vector machine and random forest. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. (ed.), Vol. pp. 174-7, IEEE,
Duda RO, Hart PE, and Stork DG (2001) Pattern classification. 2nd. Edition. New York
Efron B and Tibshirani R (1993) In An introduction to the bootstrap. Vol. 57, pp. CRC press,
Estep L, Terrie G, and Davis B (2004) Technical Note: Crop stress detection using AVIRIS hyperspectral imagery and artificial neural networks.
Filippi AM and Jensen JR (2006) Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment 100, 512-30.
Fletcher T (2009) Support vector machines explained. Tutorial paper., Mar
Foody GM and Mathur A (2004) A relative evaluation of multiclass image classification by support vector machines. Geoscience and Remote Sensing, IEEE Transactions on 42, 1335-43.
Freund Y and Schapire RE (1996) Experiments with a new boosting algorithm. In (ed.), Vol. pp. 148-56, MORGAN KAUFMANN PUBLISHERS, INC.,
Freund Y and Schapire RE (1999) A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 771–80.
Friedl MA and Brodley CE (1997) Decision tree classification of land cover from remotely sensed data. Remote sensing of environment 61, 399-409.
Fuller D (2005) Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. International Journal of Remote Sensing 26, 1057-63.
Garcia-Gutierrez J, Gonçalves-Seco L, and Riquelme-Santos JC (2011) Automatic environmental quality assessment for mixed-land zones using lidar and intelligent techniques. Expert Systems with Applications 38, 6805-13.
Geneletti D and Gorte B (2003) A method for object-oriented land cover classification combining Landsat TM data and aerial photographs. International Journal of Remote Sensing 24, 1273-86.
Genuer R, Poggi JM, and Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognition Letters 31, 2225-36.
Ghimire B, Rogan J, and Miller J (2010) Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters 1, 45-54.
Gislason PO, Benediktsson JA, and Sveinsson JR (2004) Random forest classification of multisource remote sensing and geographic data. In Geoscience and Remote Sensing Symposium, 2004. IGARSS'04. Proceedings. 2004 IEEE International. (ed.), Vol. 2, pp. 1049-52, IEEE,
Gislason PO, Benediktsson JA, and Sveinsson JR (2006) Random forests for land cover classification. Pattern Recognition Letters 27, 294-300.
Gitas IZ, Mitri GH, and Ventura G (2004) Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery. Remote Sensing of Environment 92, 409-13.
Gómez-Chova L, Muñoz-Marí J, Laparra V, Malo-López J, and Camps-Valls G (2011) A review of kernel methods in remote sensing data analysis. In Optical Remote Sensing. Vol. pp. 171-206. Springer,
Guo L, Chehata N, Mallet C, and Boukir S (2011) Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS Journal of Photogrammetry and Remote Sensing 66, 56-66.
Guyon I, Gunn S, Nikravesh M, and Zadeh L (2006) Feature Extraction: Foundations and Applications. In (ed.), Vol. pp. Springer,
Ham J, Chen Y, Crawford MM, and Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions on 43, 492-501.
Han J, Kamber M, and Pei J (2006) In Data mining: concepts and techniques. Vol. pp. Morgan kaufmann,
Hansen LK and Salamon P (1990) Neural network ensembles. Pattern Analysis and Machine Intelligence, IEEE Transactions on 12, 993-1001.
Hao Z, Yongsheng Z, Jun L, and Song J (2009) Automatic building detection using airborne LIDAR data. In Information Technology and Applications, 2009. IFITA'09. International Forum on. (ed.), Vol. 3, pp. 668-71, IEEE,
Haralick RM, Shanmugam K, and Dinstein IH (1973) Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on 610-21.
Haykin S (1999) Neural Networks: A Comprehensive Foundation. Printice-Hall. Inc., New Jersey
Hodgson ME, Jensen JR, Tullis JA, Riordan KD, and Archer CM (2003) Synergistic use of lidar and color aerial photography for mapping urban parcel imperviousness. Photogrammetric Engineering and Remote Sensing 69, 973-80.
Hsu C-W, Chang C-C, and Lin C-J (2010) A practical guide to support vector classification. In (ed.), Vol. pp.
Huang C-L and Wang C-J (2006) A GA-based feature selection and parameters optimizationfor support vector machines. Expert Systems with applications 31, 231-40.
Huang C, Davis L, and Townshend J (2002) An assessment of support vector machines for land cover classification. International Journal of Remote Sensing 23, 725-49.
Huang M, Shyue S, Lee L, and Kao C (2008) A knowledge-based approach to urban feature classification using aerial imagery with lidar data. Photogrammetric Engineering & Remote Sensing 74, 1473-85.
Hughes G (1968) On the mean accuracy of statistical pattern recognizers. Information Theory, IEEE Transactions on 14, 55-63.
Hung M and Ridd MK (2002) A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules. Photogrammetric Engineering and Remote Sensing 68, 1173-80.
Hussain E, Ural S, Kim K, Fu C-S, and Shan J (2011) Building extraction and rubble mapping for City Port-au-Prince Post-2010 earthquake with GeoEye-1 imagery and Lidar data. Photogrammetric Engineering and Remote Sensing 77, 1011-23.
Ismail R (2008) Remote sensing of forest health: the detection and mapping of Pinus patula trees infested by Sirex noctilio[Thesis]. Type, University of KwaZulu-Natal, Pietermaritzburg,
Jackson Q and Landgrebe D (2001) An adaptive classifier design for high dimensional data analysis with a limited training data set. IEEE Transactions on Geoscience and Remote Sensing 2664–79.
Jain AK, Duin RPW, and Mao J (2000) Statistical pattern recognition: A review. Pattern Analysis and Machine Intelligence, IEEE Transactions on 22, 4-37.
Jakimow B, Oldenburg C, Rabe A, Waske B, van der Linden S, and Hostert P (2012) Manual for Application: imageRF (1.1).
Jiang H, Strittholt JR, Frost PA, and Slosser NC (2004) The classification of late seral forests in the Pacific Northwest, USA using Landsat ETM+ imagery. Remote sensing of environment 91, 320-31.
Jin J (2012) A Random Forest Based Method for Urban Land Cover Classification using LiDAR Data and Aerial Imagery.
Joelsson SR, Benediktsson JA, and Sveinsson JR (2010) Random forest classification of remote sensing data. Signal and Image Processing for Remote Sensing 978, 327-38.
Kearns M and Valiant L (1994) Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM (JACM) 41, 67-95.
Keerthi SS and Lin C-J (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural computation 15, 1667-89.
Kettig RL and Landgrebe D (1976) Classification of multispectral image data by extraction and classification of homogeneous objects. Geoscience Electronics, IEEE Transactions on 14, 19-26.
Ko B, Gim J, and Nam J (2011) Cell image classification based on ensemble features and random forest. Electronics Letters 47, 638-9.
Koetz B, Morsdorf F, Van der Linden S, Curt T, and Allgöwer B (2008) Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. Forest Ecology and Management 256, 263-71.
Koltunov A and Ben‐Dor E (2001) A new approach for spectral feature extraction and for unsupervised classification of hyperspectral data based on the Gaussian mixture model. Remote Sensing Reviews 20, 123-67.
Li C-H, Kuo B-C, Lin C-T, and Huang C-S (2012) A spatial–contextual support vector machine for remotely sensed image classification. Geoscience and Remote Sensing, IEEE Transactions on 50, 784-99.
Li H, Wang Y, Li Y, and Wang X (2011) Pixel-unmixing moderate-resolution remote sensing imagery using pairwise coupling support vector machines: A case study. Geoscience and Remote Sensing, IEEE Transactions on 49, 4298-307.
Liaw A and Wiener M (2002) Classification and Regression by randomForest. R news 2, 18-22.
Lin H-T and Lin C-J (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. submitted to Neural Computation 1-32.
Liu H and Motoda H (2008) In Computational methods of feature selection. Vol. pp. Chapman and Hall/CRC,
Liu H and Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. Knowledge and Data Engineering, IEEE Transactions on 17, 491-502.
Liu W, Gopal S, and Woodcock CE (2004) Uncertainty and confidence in land cover classification using a hybrid classifier approach. Photogrammetric Engineering and Remote Sensing 70, 963-72.
Lodha SK, Kreps EJ, Helmbold DP, and Fitzpatrick DN (2006) Aerial LiDAR Data Classification Using Support Vector Machines (SVM). In 3DPVT. (ed.), Vol. pp. 567-74,
Longépé N, Rakwatin P, Isoguchi O, Shimada M, Uryu Y, and Yulianto K (2011) Assessment of ALOS PALSAR 50 m orthorectified FBD data for regional land cover classification by support vector machines. Geoscience and Remote Sensing, IEEE Transactions on 49, 2135-50.
Loosvelt L, Peters J, Skriver H, De Baets B, and Verhoest NE (2012) Impact of reducing Polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm.
Lu D and Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. International journal of Remote sensing 28, 823-70.
Lu S, Oki K, Shimizu Y, and Omasa K (2007) Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. International Journal of Remote Sensing 28, 963-84.
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. (ed.), Vol. 1, pp. 14, California, USA,
Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT et al. (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sensing of Environment 113, 2533-46.
Mas J and Flores J (2008) The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing 29, 617-63.
Mather P and Tso B (2009) In Classification methods for remotely sensed data. Vol. pp. CRC press,
Melgani F and Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. Geoscience and Remote Sensing, IEEE Transactions on 42, 1778-90.
Meng X, Currit N, LE W, and Yang X (2012) Detect residential buildings from lidar and aerial photographs through object-oriented land-use classification. Photogrammetric engineering and remote sensing 78, 35-44.
Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral equations. Philosophical transactions of the royal society of London. Series A, containing papers of a mathematical or physical character 209, 415-46.
Mitchell TM (1997) Machine learning. 1997. Burr Ridge, IL: McGraw Hill 45,
Mitra P, Murthy C, and Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE transactions on pattern analysis and machine intelligence 24, 301-12.
Mountrakis G, Im J, and Ogole C (2011) Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 66, 247-59.
Moustakidis S, Mallinis G, Koutsias N, Theocharis JB, and Petridis V (2012) SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images. Geoscience and Remote Sensing, IEEE Transactions on 50, 149-69.
Muchoney D and Strahler A (2002) Regional vegetation mapping and direct land surface parameterization from remotely sensed and site data. International Journal of Remote Sensing 23, 1125-42.
Murthy C, Raju P, and Badrinath K (2003) Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks. International Journal of Remote Sensing 24, 4871-90.
Nadir Kurnaz M, Dokur Z, and Ölmez T (2005) Segmentation of remote-sensing images by incremental neural network. Pattern Recognition Letters 26, 1096-104.
Naidoo L, Cho M, Mathieu R, and Asner G (2012) Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing 69, 167-79.
Nikfar M, Zoej MJV, Mohammadzadeh A, Mokhtarzade M, and Navabi A (2012) Optimization of multiresolution segmentation by using a genetic algorithm. Journal of Applied Remote Sensing 6, 063592-.
Nitze I, Schulthess U, and Asche H (2012) Comparison of machine learning algorithms Random Foresr, Artificial Neural Network and Support Vector Machine to Maximum Likelihood for supervised crop type classification. In Proceedings of the 4th GEOBIA. (ed.), Vol. pp. 35-40, Rio de Janeiro - Brazil.
Pal M (2005) Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26, 217-22.
Pal M and Mather P (2006) Some issues in the classification of DAIS hyperspectral data. International Journal of Remote Sensing 27, 2895-916.
Pal M and Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote sensing of environment 86, 554-65.
Pedergnana M, Marpu PR, Dalla Mura M, Benediktsson JA, and Bruzzone L (2013) A Novel Technique for Optimal Feature Selection in Attribute Profiles Based on Genetic Algorithms.
Pedergnana M, Marpu PR, Mura MD, Benediktsson JA, and Bruzzone L (2012) A novel supervised feature selection technique based on genetic algorithms. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. (ed.), Vol. pp. 60-3, IEEE,
Petropoulos GP, Vadrevu KP, Xanthopoulos G, Karantounias G, and Scholze M (2010) A comparison of spectral angle mapper and artificial neural network classifiers combined with Landsat TM imagery analysis for obtaining burnt area mapping. Sensors 10, 1967-85.
Quinlan JR (1993) In C4.5: Algorithm for machine learning. Vol. pp. Morgan Kaufmann, San Mateo.
Rabe A, van der Linden S, and Hostert P (2010) Simplifying support vector machines for classification of hyperspectral imagery and selection of relevant features. In Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on. (ed.), Vol. pp. 1-4, IEEE,
Ran Y, Li X, Lu L, and Li Z (2012) Large-scale land cover mapping with the integration of multi-source information based on the Dempster–Shafer theory. International Journal of Geographical Information Science 26, 169-91.
Ratle F, Camps-Valls G, and Weston J (2010) Semisupervised neural networks for efficient hyperspectral image classification. Geoscience and Remote Sensing, IEEE Transactions on 48, 2271-82.
Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, and Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing 67, 93-104.
Rottensteiner F (2010) Automation of object extraction from LiDAR in urban areas. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International. (ed.), Vol. pp. 1343-6, IEEE,
Saffari A, Leistner C, Santner J, Godec M, and Bischof H (2009) On-line random forests. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. (ed.), Vol. pp. 1393-400, IEEE,
Samadzadegan F, Bigdeli B, and Ramzi P (2010a) Classification of LiDAR data based on multi-class SVM. In ISPRS Archives of The 2010 Canadian Geomatics Conference and Symposium of Commission I. (ed.), Vol. pp. 1-6,
Samadzadegan F, Bigdeli B, and Ramzi P (2010b) A multiple classifier system for classification of LIDAR remote sensing data using multi-class SVM. In Multiple Classifier Systems. Vol. pp. 254-63. Springer,
Sarma V (2009) URBAN SURFACE CHARACTERIZATION USING LiDAR AND AERIAL IMAGERY[Thesis]. Type, UNIVERSITY OF NORTH TEXAS,
Schapire RE (1990) The strength of weak learnability. Machine learning 5, 197-227.
Schmidt K, Skidmore A, Kloosterman E, Van Oosten H, Kumar L, and Janssen J (2004) Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogrammetric Engineering and Remote Sensing 70, 703-16.
Secord J and Zakhor A (2007) Tree detection in urban regions using aerial lidar and image data. Geoscience and Remote Sensing Letters, IEEE 4, 196-200.
Shah CA, Arora MK, and Varshney PK (2004) Unsupervised classification of hyperspectral data: an ICA mixture model based approach. International Journal of Remote Sensing 25, 481-7.
Smith A (2010) Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm. Journal of Spatial Science 55, 69-79.
Stathakis D (2009) How many hidden layers and nodes? International Journal of Remote Sensing 30, 2133-47.
Stavrakoudis DG, Galidaki GN, Gitas IZ, and Theocharis JB (2012) A genetic fuzzy-rule-based classifier for land cover classification from hyperspectral imagery. Geoscience and Remote Sensing, IEEE Transactions on 50, 130-48.
Stumpf A and Kerle N (2011) Object-oriented mapping of landslides using Random Forests. Remote sensing of environment 115, 2564-77.
Thomas N, Hendrix C, and Congalton RG (2003) A comparison of urban mapping methods using high-resolution digital imagery. Photogrammetric engineering and remote sensing 69, 963-72.
Tian J and Chen DM (2007) Optimization in multi‐scale segmentation of high‐resolution satellite images for artificial feature recognition. International Journal of Remote Sensing 28, 4625-44.
Vatsavai RR, Bright E, Varun C, Budhendra B, Cheriyadat A, and Grasser J (2011) Machine learning approaches for high-resolution urban land cover classification: a comparative study. In Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications. (ed.), Vol. pp. 11, ACM,
Verbeke L, Vancoillie F, and De Wulf R (2004) Reusing back-propagation artificial neural networks for land cover classification in tropical savannahs. International Journal of Remote Sensing 25, 2747-71.
Walter V (2004) Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing 58, 225-38.
Wang L, Sousa W, and Gong P (2004) Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing 25, 5655-68.
Wang X-L, Waske B, and Benediktsson JA (2009) Ensemble methods for spectral-spatial classification of urban hyperspectral data. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009. (ed.), Vol. 4, pp. IV-944-IV-7, IEEE,
Wang Y and Li J (2008) Feature‐selection ability of the decision‐tree algorithm and the impact of feature‐selection/extraction on decision‐tree results based on hyperspectral data. International Journal of Remote Sensing 29, 2993-3010.
Waske B and Benediktsson JA (2007) Fusion of support vector machines for classification of multisensor data. Geoscience and Remote Sensing, IEEE Transactions on 45, 3858-66.
Waske B, Benediktsson JA, Árnason K, and Sveinsson JR (2009) Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Canadian Journal of Remote Sensing 35, S106-S16.
Waske B and van der Linden S (2008) Classifying multilevel imagery from SAR and optical sensors by decision fusion. Geoscience and Remote Sensing, IEEE Transactions on 46, 1457-66.
Waske B, van der Linden S, Oldenburg C, Jakimow B, Rabe A, and Hostert P (2012) imageRF –A user-oriented implementation for remote sensing image analysis with Random Forests. Environmental Modelling & Software
Wentz EA, Nelson D, Rahman A, Stefanov WL, and Roy SS (2008) Expert system classification of urban land use/cover for Delhi, India. International Journal of Remote Sensing 29, 4405-27.
Weston J and Watkins C (1999) Support vector machines for multi-class pattern recognition. In ESANN. (ed.), Vol. 99, pp. 61-72,
Wu S-S, Qiu X, Usery EL, and Wang L (2009) Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use. Annals of the Association of American Geographers 99, 76-98.
Xu B, Ye Y, and Nie L (2012) An improved random forest classifier for image classification. In Information and Automation (ICIA), 2012 International Conference on. (ed.), Vol. pp. 795-800, IEEE,
Yang H, Du Q, and Chen G (2012) Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of 5, 544-54.
Yu X, Hyyppä J, Vastaranta M, Holopainen M, and Viitala R (2011) Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and remote sensing 66, 28-37.
Zhang H, Zhang Y, and Lin H (2012a) Urban land cover mapping using random forest combined with optical and SAR data. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. (ed.), Vol. pp. 6809-12, IEEE,
Zhang L, Zhang L, Tao D, and Huang X (2012b) On combining multiple features for hyperspectral remote sensing image classification. Geoscience and Remote Sensing, IEEE Transactions on 50, 879-93.
Zhou W and Troy A (2008) An object‐oriented approach for analysing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing 29, 3119-35.
Zhou Z-H (2012) In Ensemble methods: foundations and algorithms. Vol. pp. CRC Press,