فهرست:
صفحه
عنوان
فصل 1 مقدمه------------------------------------------------------------------ 1
مقدمه ------------------------------------------------------------------- 2ساختار سیستم های ردیابی --------------------------------------------------- 3
دوربین ----------------------------------------------------------------------- 3
هدف ------------------------------------------------------------------------- 5
نحوه عملکرد سیستم های ردیابی -------------------------------------------- 6
الگوریتم های فاقد خاصیت پیش بینی----------------------------------------------- 6
الگوریتم های دارای خاصیت پیش بینی----------------------------------------------- 7
تعریف مساله و مشکلات پیش رو ------------------------------------------------ 8
نحوه حل مساله ------------------------------------------------------------ 10
سر فصل ها --------------------------------------------------------------- 11
فصل 2 مروری بر تحقیقات صورت گرفته ------------------------------------------- 14
مقدمه ------------------------------------------------------------------- 15
روش های مختص دوربین ثابت ----------------------------------------------- 15
روش تفریق پس زمینه ----------------------------------------------------- 15
روش های قابل استفاده در دوربین متحرک ------------------------------------- 17
روش Mean Shift ------------------------------------------------------------ 17
روش CAM Shift ------------------------------------------------------------ 20
روش جریان بصری ------------------------------------------------------------- 21
صفحه
عنوان
فصل 3 الگوریتم های ارائه شده به منظور آشکار سازی -------------------------------- 24
مقدمه ------------------------------------------------------------------- 25
الگوریتم پیشنهادی اول ----------------------------------------------------- 26جبران سازی حرکتی به وسیله الگوریتم های تطبیق بلوکی ------------------------- 26
مفهوم الگوریتم تطبیق بلوکی ----------------------------------------------------- 27
الگوریتم های جستجوی بلوک متناظر ---------------------------------------------- 29
به دست آوردن ناحیه متحرک تصویر ----------------------------------------------- 33
قطعه بندی تصویر به وسیله الگوریتم K-Means --------------------------------- 34
نمودار جریان الگوریتم پیشنهادی اول ------------------------------------------ 37
الگوریتم پیشنهادی دوم ----------------------------------------------------- 39
ساختن فضای مقیاس ------------------------------------------------------ 41
استفاده از تقریب LoG ------------------------------------------------- 44
یافتن نقاط کلیدی در تصویر ------------------------------------------------- 46
حذف نقاط کلیدی غیر موثر ------------------------------------------------- 47
آشکارساز گوشه Harris ------------------------------------------------ 47
حذف نقاط با تفکیک پذیری کم با استفاده از بسط تیلور ----------------------------- 51
جهت دهی به نقاط کلیدی انتخاب شده ---------------------------------------- 53
ایجاد خصیصه های SIFT --------------------------------------------------- 54
فصل 4 ردیابی توسط فیلتر کالمن ------------------------------------------------ 56
مقدمه ------------------------------------------------------------------- 57
فیلتر کالمن -------------------------------------------------------------- 57
نوع حرکت اهداف ---------------------------------------------------------- 61
استفاده عملی از فیلتر کالمن ------------------------------------------------- 62
صفحه
عنوان
فصل 5 شبیه سازی و مقایسه ----------------------------------------------------- 66
مقدمه ------------------------------------------------------------------- 67
دنباله فریم های مورد استفاده ------------------------------------------------ 68
دنباله فریم اول --------------------------------------------------------------- 69
دنباله فریم دوم --------------------------------------------------------------- 71
دنباله فریم سوم --------------------------------------------------------------- 73
دنباله فریم چهارم ------------------------------------------------------------- 75
دنباله فریم پنجم -------------------------------------------------------------- 78
فصل 6 نتایج و پیشنهادات ------------------------------------------------------ 82
مقدمه ------------------------------------------------------------------- 83
نتیجه گیری -------------------------------------------------------------- 83
پیشنهادات --------------------------------------------------------------- 84
فهرست منابع -------------------------------------------------------------------- 86
منبع:
فهرست منابع
Wang, P. (2010, December). Moving Object Segmentation Algorithm Based on Edge Detection. In Computational Intelligence and Software Engineering (CiSE), 2010 International Conference on (pp. 1-4). IEEE.
Saravanakumar, S., Vadivel, A., & Saneem Ahmed, C. G. (2010, December). Multiple human object tracking using background subtraction and shadow removal techniques. In Signal and Image Processing (ICSIP), 2010 International Conference on (pp. 79-84). IEEE.
Zhao, C., & Reid, I. (2010). Mean-Shift Visual Tracking with NP-Windows Density Estimates. In proc. British Machine Vision Conference (BMVC).
Chen, J., An, G., Zhang, S., & Wu, Z. (2010, March). A mean shift algorithm based on modified Parzen window for small target tracking. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on (pp. 1166-1169). IEEE.
Zhao, J., Qiao, W., & Men, G. Z. (2009, July). An approach based on mean shift and kalman filter for target tracking under occlusion. In Machine Learning and Cybernetics, 2009 International Conference on (Vol. 4, pp. 2058-2062). IEEE.
Chu, H., Ye, S., Guo, Q., & Liu, X. (2007, August). Object tracking algorithm based on camshift algorithm combinating with difference in frame. InAutomation and Logistics, 2007 IEEE International Conference on (pp. 51-55). IEEE.
Wang, A., Li, J., & Lu, Z. Improved Camshift with adaptive searching window.International Journal of Soft Computing, 2012
Li, D., Li, H., & Wei, X. (2010, October). Kalman filtering-based modified Cam-Shift vehicle tracking algorithm for highway traffic conditions. In Computer Application and System Modeling (ICCASM), 2010 International Conference on(Vol. 14, pp. V14-271). IEEE.
Horn, B. K., & Schunck, B. G. (1981). Determining optical flow. Artificial intelligence, 17(1), 185-203.
Lucas, B. D., & Kanade, T. (1981, August). An iterative image registration technique with an application to stereo vision. In IJCAI (Vol. 81, pp. 674-679).
dos Santos Pinheiro, M. A. (2010). Multi-Object Tracking in Video Sequences(Doctoral dissertation, Universidade do Porto).
Kesrarat, D., & Patanavijit, V. Tutorial of Motion Estimation Based on Horn-Schunk Optical Flow Algorithm in MATLAB®.
Jung, Y. K., & Ho, Y. S. (2003, June). Active camera tracking system using affine motion compensation. In Visual Communications and Image Processing 2003 (pp. 1966-1973). International Society for Optics and Photonics.
Chan, M. H., Yu, Y. B., & Constantinides, A. G. (1990, August). Variable size block matching motion compensation with applications to video coding. InCommunications, Speech and Vision, IEE Proceedings I (Vol. 137, No. 4, pp. 205-212). IET.
Atrianfar, H., Atrianfar, M., & Atrianfar, H. (2008). Temporal Resolution Enhancement of Video Sequences Using Transform Domain. In IPCV (pp. 185-190).
Ratnottar, J., Joshi, R., & Shrivastav, M. (2012, May). Review towards the Fast Block Matching Algorithms for Video Motion Estimation. In Communication Systems and Network Technologies (CSNT), 2012 International Conference on(pp. 153-156). IEEE.
Lu, J., & Liou, M. L. (1997). A simple and efficient search algorithm for block-matching motion estimation. Circuits and Systems for Video Technology, IEEE Transactions on, 7(2), 429-433.
Luo, Y., & Celenk, M. (2008, June). A hybrid block-matching approach to motion estimation with adaptive search area. In Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th International Conference on (pp. 85-88). IEEE.
Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). Digital image processing using MATLAB (Vol. 2). Knoxville: Gatesmark Publishing.
Adams, R., & Bischof, L. (1994). Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(6), 641-647.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.International journal of computer vision, 60(2), 91-110.
Vinukonda, P. (2011). A Study of the Scale-Invariant Feature Transform on a Parallel Pipeline (Doctoral dissertation, Louisiana State University).
Babaryka, A. (2012). Recognition from collections of local features (Doctoral dissertation, KTH).
Seo, N., & Schug, D. A. (2007). Image matching using scale invariant feature transform (SIFT). Final project report. University of Maryland, College Park, Maryland.
Lee, H., Heo, P. G., Suk, J. Y., Yeou, B. Y., & Park, H. (2009). Scale-invariant object tracking method using strong corners in the scale domain. Optical Engineering, 48(1), 017204-017204.
Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and vision computing,22(10), 761-767.
Harris, C., & Stephens, M. (1988, August). A combined corner and edge detector. In Alvey vision conference (Vol. 15, p. 50).
Matthews, J. (2002). An introduction to edge detection: The sobel edge detector. Generation5: January, 27.
Brown, M., & Lowe, D. G. (2002, September). Invariant Features from Interest Point Groups. In BMVC (No. s 1).
Brown, M., Szeliski, R., & Winder, S. (2005, June). Multi-image matching using multi-scale oriented patches. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 510-517). IEEE.
Cui, Y., Hasler, N., Thormählen, T., & Seidel, H. P. (2009). Scale invariant feature transform with irregular orientation histogram binning. In Image Analysis and Recognition (pp. 258-267). Springer Berlin Heidelberg.
Mahler, R. P. (2007). Statistical multisource-multitarget information fusion (Vol. 685). Boston: Artech House.
Li, X., Wang, K., Wang, W., & Li, Y. (2010, June). A multiple object tracking method using kalman filter. In Information and Automation (ICIA), 2010 IEEE International Conference on (pp. 1862-1866). IEEE.
Cuevas, E. V., Zaldivar, D., & Rojas, R. (2005). Kalman filter for vision tracking. Freie Univ., Fachbereich Mathematik und Informatik.
Wang, F. (2011). Particle Filters for Visual Tracking. In Advanced Research on Computer Science and Information Engineering (pp. 107-112). Springer Berlin Heidelberg.
Wang, D., Zhang, Q., & Morris, J. (2012). Distributed Markov Chain Monte Carlo kernel based particle filtering for object tracking. Multimedia Tools and Applications, 56(2), 303-314.